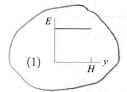
PHYSICS DEPARTMENT Exam 2

PHY 2048

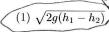
October 24, 2011

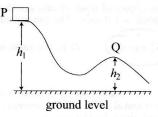
Name (print, last firs	et):	Sig	gnature:	E 4 4 2 4	t and an interest
Oi	n my honor, I have neither	given nor received unauth	orized aid on th	$is\ examination.$	
 Code your test Code your name answer sheet. Print your name Do all scratch we test, this exam p Blacken the ci make any stray p The answers a believe that no 	rest number on your answer on your answer sheet. Do not this sheet and sign it a ork anywhere on this example on this to be turned in included of your intended a mark or some answers may are rounded off. Choose of listed answer is correct wer sheet separately.	r sheet (use lines 76–80 ARKEN CIRCLES CO also. that you like. Circle you no credit will be given with unswer completely, using y be counted as incorrect. see the closest to exact.	on the answer MPLETELY. Ir answers on thout both answer a #2 penci. There is no	sheet for the 5-dig Code your UFID nur the test form. At t ver sheet and printou l or <u>blue</u> or <u>black</u>	it number). mber on your he end of the t. ink. Do not
	m is pulled at constant veloce \vec{T} as shown. The friction		ntal floor		γT θ
$(1) T \cos \theta$	(2) $T\sin\theta$	(3) zero	(4) mg	(5) $mg\cos\theta$	
static friction is over a massless,	mass of 10 kg, rests on a 0.40. An attached string frictionless pulley at the will not slide? (2) 3.5 kg	is parallel to the incline artop. What is the smallest	nd passes	(5) 10.5 kg	В
	ss m and another object of s. The magnitudes of their		o move along a o	circle of radius 1.0 m	at a constant
(1) equal	(2) in the ratio of $\sqrt{2}:1$	(3) in the ratio of $2:1$	(4) in the	ratio of 4:1	5) zero
4. A man pushes a horizontal. The work done by th	n 80-N crate a distance of force he exerts is parallel to the man is:	5.0 m upward along a fric o the slope. If the speed of	tionless slope the the crate increase	at makes an angle of uses at a rate of 1.5 m	30° with the $/\mathrm{s}^2$, then the
(1) 260 J	(2) -200 J	(3) 61 J	(4) 140 J	(5) 200 J	
	s 5 m in the $+x$ direction on the particle by this force (2) 10 (3) $-$	is: Lar epoe s, and agrounging an noncephagon en le		e $\vec{F} = (4\hat{i} + 2\hat{j} - 4\hat{k})!$ to know other forces	
6. A particle is init of the following	cially at rest on a horizonta five graphs is a correct plo	I frictionless table. It is act of work W as a function	ted upon by a co of particle speed	onstant horizontal for v ?	ce F. Which
	W (2) v	(3)	(4) W	(5) W	v

7. At time t=0 a 2-kg particle has a velocity in m/s of $4\hat{i}-3\hat{j}$. At t=3s its velocity in m/s is $2\hat{i}+3\hat{j}$. During this ti the work done on it was:


- (2) 4 J
- (3) -4 J
- (4) -40 J
- (5) $(4\hat{i} + 36\hat{j})$ J
- 8. A man moves the 10-g object shown in a vertical plane from postion X to position Y along a circular track of radius 20 m. The process takes 0.75 min. The work done by the man is about:

- (2) 1 J
- (3) 2 J
- (4) 6 J
- (5) 12 J
- 9. A ball is held at a height H above the floor. It is then released and falls to the floor. If air resistance can be ignored, which of the five graphs below correctly gives the mechanical energy E of the Earth-ball system as a function of the altitude y of the ball?

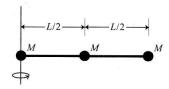



10. An ideal massless spring is used to fire a 15.0-g block horizontally across a frictionless table top. The spring has a spr constant of 20 N/m and is initially compressed by 7.0 cm. The speed of the block as it leaves the spring is:

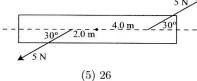
- (2) 0
- (3) $1.9 \times 10^{-3} \text{m/s}$
- (4) $2.6 \times 10^{-3} \text{m/s}$
- (5) 0.39 mm/s
- 11. A block is released from rest at point P and slides along the frictionless track shown. At point Q, its speed is:

- (2) $2g\sqrt{h_1-h_2}$
- $(3) (h_1 h_2)/2g$
- (4) $2g(h_1 h_2)$
- (5) $(h_1 h_2)^2/2g$

12. The potential energy of a 0.20-kg particle moving along the x axis is given by $U(x) = 8x^2 - 2x^4$, where U is in jou and x is in meters. When the particle is at x = 1.0 m, its acceleration is:



- (2) 0
- $(3) -8 \text{ m/s}^2$
- $(4) 8 \text{ m/s}^2$
- $(5) 40 \text{ m/s}^2$


- 13. The center of mass of a system of particles has a constant velocity if:
 - (1) the external forces acting on particles of the system sum to zero.
 - (2) the forces exerted by the particles on each other sum to zero.
 - (3) the velocity of the center of mass is initially zero.(4) the particles are distributed symmetrically around the center of mass.
 - (5) the center of mass is at the geometric center of the system.

- 14. Block A, with a mass of 2.0 kg, moves along the x axis with a velocity of 5.0 m/s in the positive x direction. It suffer an elastic collision with block B, initially at rest, and the blocks leave the collision along the x axis. If B is much more massive than A, the velocity of A after the collision is:
 - (1) -5.0 m/s
- (2) 0
- (3) +5.0 m/s
- (4) -10.0 m/s
- (5) +10.0 m/s

- 15. The angular speed in rad/s of the minute hand of a watch is:
 - (1) $\pi/1800$
- $(2) 60/\pi$
- $(3)\ 1800/\pi$
- $(4) \pi$
- $(5) \pi/60$
- 16. A wheel starts from rest and has an angular acceleration that is given by $\alpha(t) = 6t^2$. After it has turned through 10 rev its angular velocity is:
 - (1) 75 rad/s
- (2) 63 rad/s
- (3) 89 rad/s
- (4) 130 rad/s
- (5) 210 rad/s
- 17. Three identical objects, each of mass M, are fastened to a massless rod of length L as shown. The rotational inertia about one end of this array is:

- (1) $5ML^2$
- (2) $ML^2/2$
- (3) ML^2
- $(4) 3ML^2/2$
- (5) $3ML^2$
- 18. A rod is pivoted about its center. A 5-N force is applied 4 m from the pivot and another 5-N force is applied 2 m from the pivot, as shown. The magnitude of the total torque about the pivot (in N·m) is:

- (2) 0
- (3) 8.7
- (4) 5
- 19. A 8.0-cm radius disk with a rotational inertia of $0.12~\rm kg\cdot m^2$ is free to rotate on a horizontal axis through its center o mass. A string is fastened to the surface of the disk and a 10-kg mass hangs from the other end. The mass is raised by using a crank to apply a 9.0-N·m torque to the disk. The acceleration of the mass, in m/s², is:
 - (1) 0.50
- (3) 6.2
- (4) 12
- (5) 20

- 20. Where on the bubble sheet MUST you enter the 5 digit test code?
 - (1) Rows 76-80.
 - (2) It is already on every page of the question sheet.
 (3) What is the test code?

 - Oops, I thought this was the CHEM 2105 exam.
 - (5) Is it ok if I also omit my name and UFID number?

Epam #12 Fall 2011 1. F = TCOO - fx = O fx = TCOO Q, T+f. magcood-magsin 0 = 0 mg = - macood.fs + maxin 0 = 2459 N=1 m/s Nap = 2 3. NO moss dependance io a'l ar equal told W= 200+40 = 200 N W= F-d = (42+2]-42)-50= 20

6.
$$W = DK = \frac{1}{2}mv^2 - 0$$
 | quadrate

7. $W = DK = K_{q} - K_{1} = \frac{1}{2}m(v_{q}^2 - v_{r}^2)$
 $= \frac{1}{2}\cdot 2(3.6^2 - 5^2) = 13 - 25 = 12$

8 $W = \Delta U = mgh = .01 \cdot g \cdot 40$
 $= \frac{1}{2}\cdot 2 \times 2 = \frac{1}{2}mv^2$

9 $V = \frac{1}{2}\cdot 2 \times 2 = \frac{1}{2}mv^2$
 $= \frac{1}{2}mv^2 = \frac{1}{2}mv^2 = \frac{1}{2}(1556m)$

10 $W = \frac{1}{2}\cdot 2 \times 2 = \frac{1}{2}mv^2$
 $= \frac{1}{2}(h_{1} - h_{2}) = \frac{1}{2}mv^2 = \frac{1}{2}(h_{1} - h_{2}) = \frac{1}{2}$

11. $v = \frac{1}{2}mv^2 = \frac{1}{2}mv^2 = \frac{1}{2}(h_{1} - h_{2}) = \frac{1}{2}$

12. $V = ma = \frac{1}{2}mv^2 = \frac{1}{2}mv^2 = \frac{1}{2}m(16x - 8x^3)$
 $= -\frac{1}{2}(16 - 8) = -40$

13 $V = mac = \frac{1}{2}mv^2 =$