Chapter 1 - 4 review

Conversion of units

Motion with constant acceleration (1d, 2d, 3d)

Circular motion

Relative motion

- Convert mph to km/s
- Convert Thrust in Imperial Units (Ib²ft/s²) to Thrust in SI units (kg²m/s²)

You drop a pebble in a well and hear a splash 2 s later. How far down is the water?

Your friend drops a stone from a cliff of height h=500 m. You throw your stone 2 s later. At what velocity pointing down you need to throw you stone so that it hits the ground first?

A high-speed passenger train traveling at speed 160 mph rounds a bend. The engineer and is shocked to see 0.5 mile ahead a slow locomotive moving with a speed of 30 mph moving away. The engineer hits the brakes, which de-accelerates the train at 0.1g. Will be the collision avoided?

$$\vec{a} = 3\hat{i} + 4\hat{j}$$
$$\vec{b} = -3\hat{i} + 4\hat{j}$$

Draw two vectors Find length of each of the two vectors Find sum of the two vectors $\vec{c} = \vec{a} + \vec{b}$ Find their scalar product $\vec{c} = \vec{a} \cdot \vec{b}$ Find the vector of their cross-product $\vec{c} = \vec{a} \times \vec{b}$

$$\vec{r}(t) = (3t+2)\hat{i} + (2t^2-1)\hat{j}$$

Find vector of velocity at t=1 s

- magnitude
- direction

Find magnitude of average velocity between t=0 and 2 s

A pilot is tested in a centrifuge of radius 5 m. The centrifuge makes 20 turns per min.

What is the centripetal acceleration experienced by the pilot?

Relative motion

Blue – coordinate system A Yellow – coordinate system B

- \vec{r}_{OA} -- position of object O in coordinate system A
- \vec{r}_{AB} -- position of coordinate system A origin in coordinate system B
- \vec{r}_{OB} -- position of object O in coordinate system B

$$\vec{r}_{OB} = \vec{r}_{AB} + \vec{r}_{OA}$$

$$\frac{d\vec{r}_{OB}}{dt} = \frac{d\vec{r}_{AB}}{dt} + \frac{d\vec{r}_{OA}}{dt} \longrightarrow \vec{v}_{OB} = \vec{v}_{AB} + \vec{v}_{OA}$$

River flows south with speed v_r

You swim west toward sunset with speed v_o

How long will it take you to cross the river?

How far downstream will you land?

HITT quiz

There are 2 possible semi-circular turns for the train with radii $r_A:r_B=2$. Train can enter the turn A at speed v_A and the turn B at speed v_B so that $v_A:v_B=2$.

What is the ratio of centripetal accelerations experienced by passengers on such turns, $a_A:a_B=?$

(a) 4 (b) 2 (c) 1 (d) 0.5 (e) 0.25