## Chapter 1-4 review

## Conversion of units

Motion with constant acceleration (1d, 2d, 3d)

Circular motion

Relative motion

## Example

- Convert mph to km/s
- Convert Thrust in Imperial Units ( $\mathbf{l b}^{2} \mathrm{ft} / \mathbf{s}^{2}$ ) to Thrust in SI units ( $\mathbf{k g}^{2} \mathbf{m} / \mathbf{s}^{2}$ )


## Example

You drop a pebble in a well and hear a splash 2 s later. How far down is the water?

## Example

Your friend drops a stone from a cliff of height h=500 m. You throw your stone 2 s later. At what velocity pointing down you need to throw you stone so that it hits the ground first?

## Example

A high-speed passenger train traveling at speed 160 mph rounds a bend. The engineer and is shocked to see 0.5 mile ahead a slow locomotive moving with a speed of 30 mph moving away. The engineer hits the brakes, which de-accelerates the train at 0.1 g . Will be the collision avoided?

## Example

$$
\begin{aligned}
& \vec{a}=3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}} \\
& \vec{b}=-3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}
\end{aligned}
$$

Draw two vectors
Find length of each of the two vectors
Find sum of the two vectors $\vec{c}=\vec{a}+\vec{b}$
Find their scalar product $\vec{c}=\vec{a} \cdot \vec{b}$
Find the vector of their cross-product $\vec{c}=\vec{a} \times \vec{b}$

## Example

$\vec{r}(t)=(3 t+2) \hat{i}+\left(2 t^{2}-1\right) \hat{\mathrm{j}}$

Find vector of velocity at $\mathrm{t}=1 \mathrm{~s}$

- magnitude
- direction

Find magnitude of average velocity between $\mathrm{t}=0$ and 2 s

## Example

A pilot is tested in a centrifuge of radius 5 m . The centrifuge makes 20 turns per min.

What is the centripetal acceleration experienced by the pilot?

## Relative motion



Blue - coordinate system A Yellow - coordinate system B
$\vec{r}_{O A} \quad-$ position of object O in coordinate system A
$\vec{r}_{A B} \quad$-- position of coordinate system A origin in coordinate system B
$\vec{r}_{O B} \quad--$ position of object O in coordinate system B

$$
\begin{aligned}
& \vec{r}_{O B}=\vec{r}_{A B}+\vec{r}_{O A} \\
& \frac{d \vec{r}_{O B}}{d t}=\frac{d \vec{r}_{A B}}{d t}+\frac{d \vec{r}_{O A}}{d t} \rightarrow \vec{v}_{O B}=\vec{v}_{A B}+\vec{v}_{O A}
\end{aligned}
$$

## Example



River flows south with speed $\mathbf{v}_{\mathrm{r}}$

You swim west toward sunset with speed $\mathrm{v}_{\mathrm{o}}$

How long will it take you to cross the river?

How far downstream will you land?

## HITT quiz



There are 2 possible semi-circular turns for the train with radii $r_{A}: r_{B}=2$. Train can enter the turn $A$ at speed $v_{A}$ and the turn $B$ at speed $v_{B}$ so that $\mathrm{v}_{\mathrm{A}}: \mathrm{v}_{\mathrm{B}}=2$.

What is the ratio of centripetal accelerations experienced by passengers on such turns, $a_{\mathrm{A}}: \boldsymbol{a}_{\mathrm{B}}=$ ?
(a) 4
(b) 2
(c) 1
(d) 0.5
(e) 0.25

