Chapter 9-12 review

Center of Mass $\boldsymbol{m}_{\text {com }}=\ldots, m a=F$
Momentum: $p=m v, d p=F d t$, conservation
Collisions: using momentum and kinetic energy conservation
Rotational kinematics
Moment of inertia $I=\ldots$, parallel axis theorem $I=I_{\text {com }}+m h^{2}$
Torque $\tau=r \times F, \tau=I \alpha$
Rolling: ω wrt center $=\omega$ wrt touching point
Angular momentum: $L=r \times p, d L=\tau d t$, conservation
Using angular momentum conservation
Gyroscope precession
Equilibrium

Finding COM, Moment of Inertia

-Break up object in simpler parts

$y_{\text {com }}=\frac{2 m}{M+2 m} \frac{\sqrt{3} L}{4}$
$I_{0}=2\left(\frac{1}{12} m L^{2}+m\left(\frac{L}{2}\right)^{2}\right)+\left(\frac{1}{12} M L^{2}+M\left(\frac{\sqrt{3} L}{2}\right)^{2}\right)$

- Moment of Inertia: $I=\sum m_{i} r_{i}^{2}$
- Use parallel axis theorem
- Break up object in simpler parts

$$
x_{c o m}=-\frac{r^{2}}{R^{2}-r^{2}} r
$$

$I_{0}=\frac{1}{2} M R^{2}-\left(\frac{1}{2} m r^{2}+m r^{2}\right)=\frac{1}{2}\left(\pi R^{2} \rho-\pi r^{2} \rho\right) R^{2}-\frac{3}{2}\left(\pi r^{2} \rho\right) r^{2}$

Momentum

Gun of mass \mathbf{M} fires a bullet of mass \mathbf{m} with velocity \mathbf{v}.

Find recoiling velocity of gun u.

Find the force F on your shoulder, if your shoulder deforms by distance d as it stops the recoil. Assume that the force, while it acts, is constant.

$$
\begin{aligned}
& u=\frac{m}{M} v \\
& F=\left(\frac{m v^{2}}{2}\right) \frac{1}{d} \frac{m}{M}
\end{aligned}
$$

Inelastic collision

Given you know the maximum height of the block as it swings to the right, find initial velocity of a bullet.

Elastic collisions

A large ball (\#1) of mass M and moving with velocity v along an x-axis collides elastically with a small ball (\#2) of mass m at rest.

Find velocities of the two balls after the collision.

$$
\begin{aligned}
& u_{1}=\frac{M-m}{M+m} v \\
& u_{2}=\frac{2 M}{M+m} v
\end{aligned}
$$

Rotation

Find tension in the rope T, as the rope wound on the wheel of mass m and radius r unwinds under the weight M

$$
T=\frac{M g}{1+\frac{M r^{2}}{I}}=\frac{M m}{M+m} g
$$

Gyroscope

$$
\Omega=\frac{\tau}{L}=\frac{r F_{\perp}}{I \omega} \quad \bigcap_{\mathrm{F} \downarrow}^{\text {point }}
$$

The gyroscope (disk) spins around its axis and is free to rotate around the pivot point.

Direction of spinning is shown with \Rightarrow
Force is applied downward in plane of the screen

Which way will the gyroscope start precessing?

Away from you into the screen (around z-axis)

Equilibrium

A ladder of length L makes an angle 30° with a wall.
Max static friction coefficient between the ladder and the floor $\mu_{\max }=0.25$ and there is no friction between the ladder and the wall.
How far can you climb the ladder before it starts sliding along the floor?

$$
\text { Answer: } \quad l_{\max }=\mu_{\max } \frac{\cos \alpha}{\sin \alpha} L=0.25 \sqrt{3} L \approx 0.4 L
$$

