Circuits

What You Already Know

\rightarrow Nature of current
\rightarrow Current density
\rightarrow Drift speed and current
\rightarrow Ohm's law
\rightarrow Conductivity and resistivity
\rightarrow Calculating resistance from resistivity
\rightarrow Power in electric circuits

Chapter 27: Electric Circuits

\rightarrow Work, energy and EMF
\rightarrow Single loop circuits
\rightarrow Multiloop circuits
\rightarrow Ammeters and voltmeters
\rightarrow RC circuits and time constant

Reading Quiz for Chapter 27

\rightarrow The electric current is defined as:
$\rightarrow(1)$ amount of charge per time
-(2) amount of charge per area

- (3) amount of charge per volume
\rightarrow When resistors are connected in series
-(1) the current in each resistor is different
(2) the current in each resistor is the same
- (3) the voltage in each resistor is the same
\rightarrow Which of the following is not related to Kirchhoff's Rules?
- (1) conservation of charge
- (2) conservation of energy
(3) conservation of momentum

EMF

\rightarrow EMF device performs work on charge carriers

- Converts energy to electrical energy
- Moves carriers from low potential to high potential
- Maintains potential across terminals
\rightarrow Various types of EMF devices
- Battery
- Generator
- Fuel cell
- Solar cell
- Thermopile

Electrolytic reaction
Magnetic field
Oxidation of fuel
Electromagnetic energy
Nuclear decay
\rightarrow Example: battery

- Two electrodes (different metals)

- Immersed in electrolyte (dilute acid)
\diamond One electrode develops + charge, the other - charge

Common dry cell battery

Electrons in the wire

\rightarrow If the electrons move so slowly through the wire, why does the light go on right away when we flip a switch?

- Household wires have almost no resistance

The electric field inside the wire travels much faster

- Light switches do not involve currents
- None of the above

Electrons in the wire, part 2

\rightarrow Okay, so the electric field in a wire travels quickly. But, didn't we just learn that E = 0 inside a conductor?

- True, it can't be the electric field after all!!
\bullet The electric field travels along the outside of the conductor
$-E=0$ inside the conductor applies only to static charges
- None of the above

Kirchhoff's Rules

\rightarrow J unction rule (conservation of charge)

- Current into junction = sum of currents out of it

$$
I=I_{1}+I_{2}+I_{3}
$$

\rightarrow Loop rule (conservation of energy)

- Algebraic sum of voltages around a closed loop is 0

Finding Current in Series Circuit

\rightarrow Define current direction
\rightarrow Start at some position (a)

- Define its potential to be 0
\rightarrow Move in direction of current, adding voltage sources \& drops
- Voltage source: +E
- Resistor 1: -iR R_{1}
- Resistor 2: - iR_{2}
- Total voltage change is 0

$$
\begin{gathered}
0+E-i R_{1}-i R_{2}=0 \\
i=\frac{E}{R_{1}+R_{2}}
\end{gathered}
$$

Resistors in series

\rightarrow EMF of battery is $12 \mathrm{~V}, 3$ identical resistors. What is the potential difference across each resistor?

- 12 V
- 0 V

Resistors in series

\rightarrow If the light bulbs are all the same in each of these two circuits, which circuit has the higher current?
circuit A

- circuit B
- both the same
\rightarrow In which case is each light bulb brighter?
circuit A
- circuit B
- both the same

Real EMF Sources: Internal Resistance

\rightarrow Real batteries have small internal resistance

- Lowers effective potential delivered to circuit

$$
\begin{aligned}
i & =\frac{E}{r+R} \\
V_{\mathrm{eff}} & =V_{b}-V_{a}=E-i r \\
& =E-\frac{E}{r+R} r
\end{aligned}
$$

This is the voltage measured across the terminals!

Internal Resistance Example

\rightarrow Loss of voltage is highly dependent on load

$$
\begin{array}{lll}
\rightarrow E=12 \mathrm{~V}, r=0.1 \Omega, R=100 \Omega & V_{\mathrm{eff}}=12 / 1.001=11.99 \mathrm{~V} \\
& \bullet \text { Loss of } 0.01 \mathrm{~V} \\
\rightarrow E=12 \mathrm{~V}, r=0.1 \Omega, R=10 \Omega & V_{\mathrm{eff}}=12 / 1.01=11.9 \mathrm{~V} \\
& \bullet \text { Loss of } 0.1 \mathrm{~V} & \\
\rightarrow E=12 \mathrm{~V}, r=0.1 \Omega, R=1 \Omega & V_{\mathrm{eff}}=12 / 1.1=10.9 \mathrm{~V} \\
& \bullet \text { Loss of } 1.1 \mathrm{~V} \\
\rightarrow E=12 \mathrm{~V}, r=0.1 \Omega, R=0.5 \Omega & V_{\mathrm{eff}}=12 / 1.2=10.01 \mathrm{~V} \\
& \bullet \text { Loss of } 2.0 \mathrm{~V}
\end{array}
$$

Heating From Internal Resistance

\rightarrow Heating of EMF source: $\mathrm{P}=\mathrm{i}^{2} \mathrm{r}$

- Heating is extremely dependent on load
$\rightarrow E=12 \mathrm{~V}, \mathrm{r}=0.1 \Omega$
$\bullet \mathrm{R}=100 \Omega \quad \mathrm{~V}_{\mathrm{ba}}=11.99 \mathrm{~V} \quad \mathrm{I}=0.12 \mathrm{~A}$
$\bullet \mathrm{R}=10 \Omega \quad \mathrm{~V}_{\mathrm{ba}}=11.9 \mathrm{~V} \quad \mathrm{I}=1.19 \mathrm{~A}$
- $\mathrm{R}=1.0 \Omega$
- $R=0.5 \Omega$
$\mathrm{V}_{\mathrm{ba}}=10.9 \mathrm{~V} \quad \mathrm{I}=10.9 \mathrm{~A}$

Resistors in Parallel

\rightarrow Current splits into several branches. Total current is conserved

- $1=I_{1}+I_{2}$
\rightarrow Potential difference is same across each resistor
- $V=V_{1}=V_{2}$

$$
\begin{aligned}
& \frac{V}{R_{p}}=\frac{V}{R_{1}}+\frac{V}{R_{2}} \\
& \frac{1}{R_{p}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}
\end{aligned}
$$

$R_{p}=$ equivalent resistance

Resistors in Parallel

\rightarrow As more resistors R are added in parallel to the circuit, how does total resistance between points P and Q change?

- (a) increases
(b) remains the same
(c) decreases
\rightarrow If the voltage between $P \& Q$ is held constant, and more resistors are added, what happens to
 the current through each resistor?
- (a) increases
(b) remains the same
- (c) decreases

Overall current increases, but current through each branch is still V/R.

Resistance

\rightarrow What is the net resistance of the circuit connected to the battery? Each resistance has $\mathrm{R}=3 \mathrm{k} \Omega$
$-1 \& 2$ in series $\Rightarrow 6 \mathrm{k} \Omega$

- 3 in parallel with $1 \& 2 \Rightarrow 2 \mathrm{k} \Omega$
- 4 in series $\Rightarrow 5 \mathrm{k} \Omega$
- 5 in parallel $\Rightarrow 15 / 8 \mathrm{k} \Omega=1.875 \mathrm{k} \Omega$
$\bullet 6$ in series $\Rightarrow 4.875 \mathrm{k} \Omega$

Circuits

\rightarrow If the light bulbs are all the same in each of these two circuits, which circuit has the higher current?
(a) circuit A
(b) circuit B

- (c) both the same

B draws twice the current as A
\rightarrow In which case is each light bulb brighter?
(a) circuit A
(b) circuit B
(c) both the same

Current through each branch is unchanged (V/R)

Light Bulb Problem

\rightarrow Two light bulbs operate at 120 V , one with a power rating of 25 W and the other with a power rating of 100W. Which one has the greater resistance?
(a) the one with 25 W

- (b) the one with 100 W
- (c) both have the same resistance
\rightarrow Which carries the greater current?
(a) the one with 25 W
(b) the one with 100 W
- (c) both have the same current

$P=I^{2} R=V^{2} / R$, so 100W bulb has $1 / 4$ the resistance of the 25 W bulb and carries $4 x$ the current.

Dimmer

\rightarrow When you rotate the knob of a light dimmer, what is being changed in the electric circuit?

- (a) the voltage
- (b) the resistance
- (c) the current
- (d) both (a) and (b)
(e) both (b) and (c)

House voltage is always $110-120 \mathrm{~V}$. Turning the knob increases the circuit resistance and thus lowers the current.

Power lines

\rightarrow At large distances, the resistance of power lines becomes significant. To transmit maximum power, is it better to transmit high V, low I or high I, low V?
(a) high V, low I

Power loss is $I^{2} R$, so want

- (b) low V, high I to minimize current.
- (c) makes no difference
\rightarrow Why do birds sitting on a high-voltage power line survive?
- They are not touching high and low potential simultaneously to form a circuit that can conduct current

Household Circuits

\rightarrow All devices are added in parallel.
\rightarrow Overload: too many devices that require a lot of current can draw more current than wires can handle.

- Overheating of wires
- Fire hazard!

Resistors

\rightarrow Current flows through a light bulb. If a wire is now connected across the bulb as shown, what happens?

- (a) All the current continues to flow through the bulb
(b) Current splits 50-50 into wire and bulb
(c) All the current flows through the wire
- (d) None of the above

The wire "shunt" has almost no resistance and it is in parallel with a bulb having resistance. Therefore all the current follows the zero (or extremely low) resistance path.

Circuits

\rightarrow Two light bulbs A and B are connected in series to a constant voltage source. When a wire is connected across B, what will happen to bulb A?
(a) burns more brightly than before

- (b) burns as brightly as before
- (c) burns more dimly than before
- (d) goes out

The wire shunt effectively eliminates the second resistance, hence increasing the current in the circuit by $2 x$. The first bulb burns $4 x$ brighter ($I^{2} R$).

Circuits

\rightarrow Consider the network of resistors shown below. When the switch S is closed, then:

- What happens to the voltage across $R_{1}, R_{2}, R_{3}, R_{4}$? $\uparrow \uparrow \downarrow \downarrow$
- What happens to the current through $R_{1}, R_{2}, R_{3}, R_{4}$? $\uparrow \uparrow \downarrow \downarrow$
- What happens to the total power output of the battery? \uparrow

Let $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}_{4}=90 \Omega$ and $\mathrm{V}=45 \mathrm{~V}$. Find the current through each resistor before and after closing the switch.

Before

$$
>I_{1}=45 / 135=1 / 3
$$

$$
>I_{2}=0
$$

$$
>I_{3}=I_{4}=15 / 90=1 / 6
$$

After

$$
>I_{1}=45 / 120=3 / 8
$$

$$
>I_{2}=I_{3}=I_{4}=1 / 8
$$

Circuits

\rightarrow The light bulbs in the circuits below are identical. Which configuration produces more light?
(a) circuit I
(b) circuit II

- (c) both the same

Circuit II has $1 / 2$ current of each branch of circuit I, so each bulb is $1 / 4$ as bright. The total light in circuit I is thus $4 x$ that of circuit II.
circuit I

circuit II

Circuits

\rightarrow The three light bulbs in the circuit are identical. The current flowing through bulb B, compared to the current flowing through bulb A, is

- a) 4 times as much
-b) twice as much
-c) the same
d) half as much
- e) 1/4 as much

Branch of circuit A has $1 / 2$ resistance, thus it has $2 x$ current.

Circuits

\rightarrow The three light bulbs in the circuit are identical. What is the brightness of bulb B compared to bulb A?

- a) 4 times as much
-b) twice as much
-c) the same
-d) half as much e) $1 / 4$ as much

Use $P=I^{2} R$. Thus $2 x$ current in A means it is $4 x$ brighter.

More Complicated Circuits

\rightarrow Parallel and series rules are not enough!
\rightarrow Use Kirchoff's rules

Problem Solving Using Kirchhoff's Rules

\rightarrow Label the current in each branch of the circuit

- Choice of direction is arbitrary
- Signs will work out in the end (if you are careful!!)
- Apply the junction rule at each junction
- Keep track of sign of currents entering and leaving
\rightarrow Apply loop rule to each loop (follow in one direction only)
- Resistors: if loop direction matches current direction, voltage drop
- Batteries: if loop direction goes through battery in "normal" direction, voltage gain
\rightarrow Solve equations simultaneously
- You need as many equations as you have unknowns

Kirchhoff's rules

\rightarrow Determine the magnitudes and directions of the currents through the two resistors in the figure below.

- Take two loops, 1 and 2, as shown

$$
\begin{aligned}
& \text { Use } I_{1}=I_{2}+I_{3} \\
& { }^{1} \begin{aligned}
+6-15 I_{3} & =0 \\
-22 I_{2}+9+15 I_{3} & =0
\end{aligned} \\
& I_{3}=6 / 15=0.40 \\
& 2 I_{2}=15 / 22=0.68 \\
& I_{1}=I_{2}+I_{3}=1.08
\end{aligned}
$$

Circuit Problem (1)

\rightarrow The light bulbs in the circuit are identical. What happens when the switch is closed?

- a) both bulbs go out
b) the intensity of both bulbs increases
© c) the intensity of both bulbs decreases
d) nothing changes

Before: Potential at (a) is 12 V , but so is potential at (b) because equal resistance divides 24 V in half. When the switch is closed, nothing will change
 since (a) and (b) are still at same potential.

Circuit Problem (2)

\rightarrow The light bulbs in the circuit shown below are identical. When the switch is closed, what hannens to the intensitv of the light bulbs?

- a) bulb A increases
-b) bulb A decreases
-c) bulb B increases
- d) bulb B decreases
e) nothing changes

Before: Potential at (a) is 12 V , but so
 is potential at (b) because equal resistance divides 24 V in half. When the switch is closed, nothing will change since (a) and (b) are still at same potential.

Circuit Problem (3)

\rightarrow The bulbs A and B have the same R. What happens when the switch is closed?

- a) nothing happens
b) A gets brighter, B dimmer
c) B gets brighter, A dimmer
-d) both go out

Before: Bulb A and bulb B both have 18 V across them.

After: Bulb A has 12 V across it and bulb B has 24 V across it (these potentials are forced by the batteries).

Wheatstone Bridge

\rightarrow An ammeter A is connected between points a and b in the circuit below, in which the four resistors are identical. What is the current through the ammeter?
-a) $1 / 2$
-b) I / 4
-c) zero

- d) need more information

The parallel branches have the same resistance, so equal currents flow in each branch. Thus (a) and (b) are at the same potential and there is no current flow across the ammeter.

Res-Monster Maze (p .725)

 All resistors are 4Ω

Find current in R

Problem solving

\rightarrow Find the value of R that maximizes power emitted by R.

$$
\frac{I_{2}}{I_{T}}=\frac{\frac{1}{R}}{\frac{1}{R}+\frac{1}{12}}=\frac{12}{12+R} \Rightarrow I_{2}=\frac{12}{4+R}
$$

$$
P_{2}=I_{2}^{2} R=\frac{144 R}{(4+R)^{2}} \stackrel{\text { Maximize }}{ } \quad R=4 \Omega \quad P_{2}=9 \mathrm{~W}
$$

Circuits

\rightarrow Which of the equations is valid for the circuit shown below?

- a) $2-I_{1}-2 I_{2}=0$
-b) $2-2 \mathrm{I}_{1}-2 \mathrm{I}_{2}-4 \mathrm{I}_{3}=0$
- c) $2-I_{1}-4-2 I_{2}=0$
(d) $I_{3}-2 I_{2}-4 I_{3}=0$
-e) $2-2 I_{1}-2 I_{2}-4 I_{3}=0$

Light Bulbs

\rightarrow A three-way light bulb contains two filaments that can be connected to the 120 V either individually or in parallel.

- A three-way light bulb can produce $50 \mathrm{~W}, 100 \mathrm{~W}$ or 150 W , at the usual household voltage of 120 V .
- What are the resistances of the filaments that can give the three wattages quoted above?

$$
\begin{aligned}
& \text { Use } P=V^{2} / R \\
& >R_{1}=120^{2} / 50=288 \Omega(50 \mathrm{~W}) \\
& >R_{2}=120^{2} / 100=144 \Omega(100 \mathrm{~W})
\end{aligned}
$$

Problem

\rightarrow What is the maximum number of 100 W light bulbs you can connect in parallel in a 100 V circuit without tripping a 20 A circuit breaker?
-(a) 1
(b) 5
-(c) 10
(d) 20
-(e) 100
Each bulb draws a current of 1A. Thus only 20 bulbs are allowed before the circuit breaker is tripped.

RC Circuits

\rightarrow Charging a capacitor takes time in a real circuit

- Resistance allows only a certain amount of current to flow
- Current takes time to charge a capacitor
\rightarrow Assume uncharged capacitor initially
- Close switch at $\mathrm{t}=0$
\bullet Initial current is $i=E / R \quad$ (no charge on capacitor)
\rightarrow Current flows, charging capacitor
- Generates capacitor potential of q/C

$$
i=\frac{E-q / C}{R}
$$

\rightarrow Current decreases continuously as capacitor charges!
\bullet Goes to 0 when fully charged

Analysis of RC Circuits

\rightarrow Current and charge are related

$$
i=d q / d t
$$

\rightarrow So can recast previous equation as "differential equation"

$$
i=\frac{E-q / C}{R} \Longleftrightarrow \frac{d q}{d t}+\frac{q}{R C}=\frac{E}{R}
$$

\rightarrow General solution is $q=E C+K e^{-t / R C}$

- (Check and see!)
- $K=-E C$ (necessary to make $q=0$ at $t=0$)
\rightarrow Solve for charge q and current i

$$
q=E C\left(1-e^{-t / R C}\right) \quad i=\frac{d q}{d t}=\frac{E}{R} e^{-t / R C}
$$

Charge and Current vs Time (For Initially Uncharged Capacitor)

Exponential Behavior

$\rightarrow t=R C$ is the "characteristic time" of any RC circuit

- Only t / RC is meaningful
$\rightarrow t=R C$
- Current falls to 37% of maximum value
- Charge rises to 63% of maximum value
$\rightarrow t=2 R C$
- Current falls to 13.5% of maximum value
- Charge rises to 86.5% of maximum value
$\rightarrow t=3 R C$
- Current falls to 5\% of maximum value
- Charge rises to 95% of maximum value
$\rightarrow t=5 R C$
- Current falls to 0.7% of maximum value
- Charge rises to 99.3% of maximum value

Discharging a Capacitor

\rightarrow Connect fully charged capacitor to a resistor at $t=0$

\rightarrow General solution is $q=K e^{-t / R C}$
$\bullet K=V C$ (necessary to make have full charge at $t=0$)
\rightarrow Solve for charge q and current i

$$
q=V C e^{-t / R C} \quad i=\frac{d q}{d t}=-\frac{V}{R} e^{-t / R C}
$$

Charge and Current vs Time

 (For Initially Charged Capacitor)

