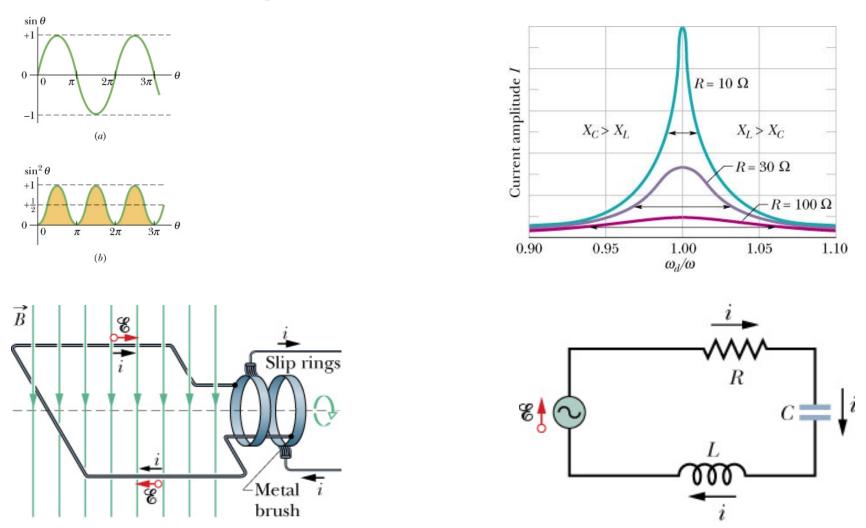
Chapter 31: RLC Circuits



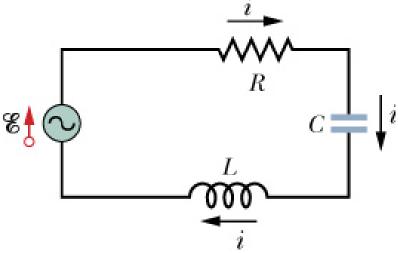
Topics

→LC Oscillations

Conservation of energy

→Damped oscillations in RLC circuits

- Energy loss
- →AC current
 - RMS quantities
- →Forced oscillations
 - Resistance, reactance, impedance
 - Phase shift
 - Resonant frequency
 - Power
- →Transformers
 - Impedance matching



LC Oscillations

→Work out equation for LC circuit (loop rule)

$$-\frac{q}{C} - L\frac{di}{dt} = 0$$

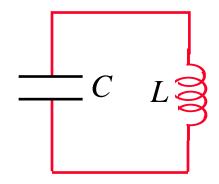
 \rightarrow Rewrite using i = dq/dt

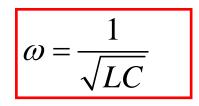
$$L\frac{d^2q}{dt^2} + \frac{q}{C} = 0 \implies \frac{d^2q}{dt^2} + \omega^2 q = 0$$

 $\bullet \omega$ (angular frequency) has dimensions of 1/t

→Identical to equation of mass on spring

$$m\frac{d^2x}{dt^2} + kx = 0 \implies \frac{d^2x}{dt^2} + \omega^2 x = 0 \qquad \qquad \omega = \sqrt{\frac{k}{m}}$$





LC Oscillations (2)

→Solution is same as mass on spring \Rightarrow oscillations

$$q = q_{\max} \cos(\omega t + \theta)$$
 $\omega = \sqrt{\frac{k}{m}}$

• q_{max} is the maximum charge on capacitor

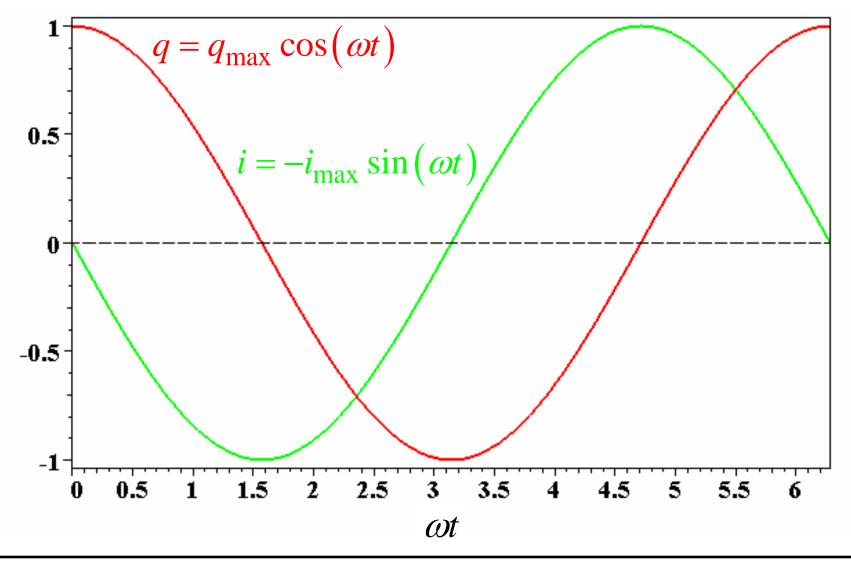
- $\bullet \theta$ is an unknown phase (depends on initial conditions)
- →Calculate current: i = dq/dt

$$i = -\omega q_{\max} \sin(\omega t + \theta) = -i_{\max} \sin(\omega t + \theta)$$

→Thus both charge and current oscillate

- Angular frequency ω , frequency $f = \omega/2\pi$
- Period: $T = 2\pi/\omega$
- Current and charge differ in phase by 90°

Plot Charge and Current vs t



PHY2049: Chapter 31

Energy Oscillations in LC Circuits

→Total energy in circuit is conserved. Let's see why

 $L\frac{di}{dt} + \frac{q}{C} = 0$ Equation of LC circuit

$$L\frac{di}{dt}i + \frac{q}{C}\frac{dq}{dt} = 0$$

Multiply by i = dq/dt

$$\frac{L}{2}\frac{d}{dt}(i^{2}) + \frac{1}{2C}\frac{d}{dt}(q^{2}) = 0 \qquad \text{Use} \quad \frac{dx^{2}}{dt} = 2x\frac{dx}{dt}$$
$$\frac{d}{dt}\left(\frac{1}{2}Li^{2} + \frac{1}{2}\frac{q^{2}}{C}\right) = 0 \qquad \frac{1}{2}Li^{2} + \frac{1}{2}\frac{q^{2}}{C} = \text{const}$$
$$U_{L} + U_{C} = \text{const}$$

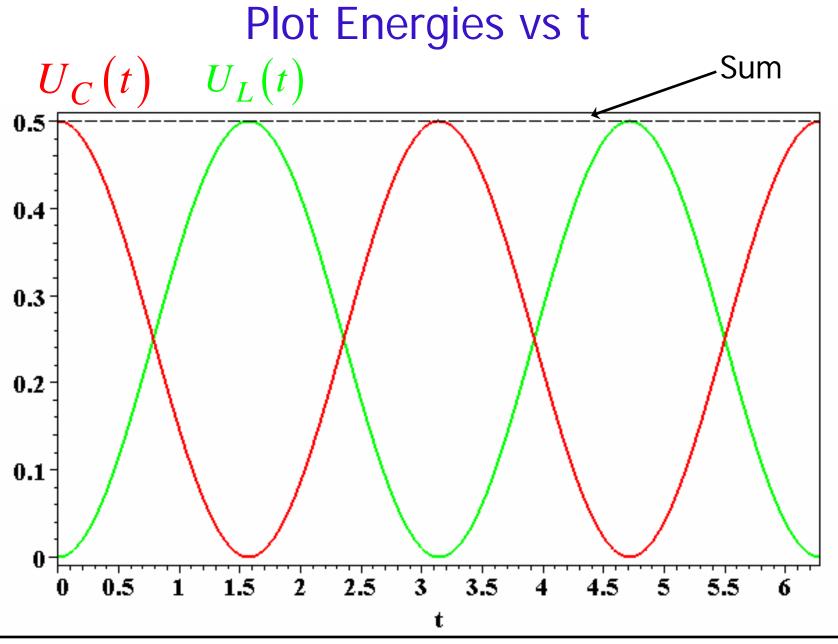
Oscillation of Energies

→Energies can be written as (using $\omega^2 = 1/LC$)

$$U_{C} = \frac{q^{2}}{2C} = \frac{q_{\text{max}}^{2}}{2C} \cos^{2}(\omega t + \theta)$$
$$U_{L} = \frac{1}{2}Li^{2} = \frac{1}{2}L\omega^{2}q_{\text{max}}^{2}\sin^{2}(\omega t + \theta) = \frac{q_{\text{max}}^{2}}{2C}\sin^{2}(\omega t + \theta)$$

→Conservation of energy:
$$U_C + U_L = \frac{q_{\text{max}}^2}{2C} = \text{const}$$

→Energy oscillates between capacitor and inductor
◆Endless oscillation between electrical and magnetic energy
◆Just like oscillation between potential energy and kinetic energy



PHY2049: Chapter 31

LC Circuit Example

→Parameters

 $\bullet C = 20 \mu F$

◆ L = 200 mH

Capacitor initially charged to 40V, no current initially

→Calculate
$$\omega$$
, f and T
• $\omega = 500 \text{ rad/s}$ $\omega = 1/\sqrt{LC} = 1/\sqrt{(2 \times 10^{-5})(0.2)} = 500$
• f = $\omega/2\pi = 79.6 \text{ Hz}$
• T = 1/f = 0.0126 sec
→Calculate q_{max} and i_{max}
• q_{max} = CV = 800 μ C = 8 × 10⁻⁴ C
• i_{max} = ω q_{max} = 500 × 8 × 10⁻⁴ = 0.4 A
→Calculate maximum energies

 $\bullet U_{C} = q_{max}^{2}/2C = 0.016J$ $U_{L} = Li_{max}^{2}/2 = 0.016J$

LC Circuit Example (2)

→Charge and current $q = 0.0008 \cos(500t)$ $i = \frac{dq}{dt} = -0.4 \sin(500t)$ →Energies

 $U_C = 0.016\cos^2(500t)$ $U_L = 0.016\sin^2(500t)$

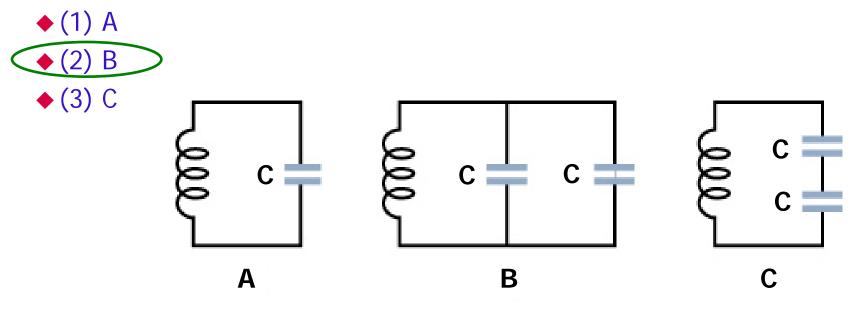
→Voltages

$$V_C = q/C = 40\cos(500t)$$
$$V_L = Ldi/dt = -L\omega i_{\max}\cos(500t) = -40\cos(500t)$$

→Note how voltages sum to zero, as they must!

Quiz

→Below are shown 3 LC circuits. Which one takes the least time to fully discharge the capacitors during the oscillations?



$$\omega = 1/\sqrt{LC}$$

C has smallest capacitance, therefore highest frequency, therefore shortest period

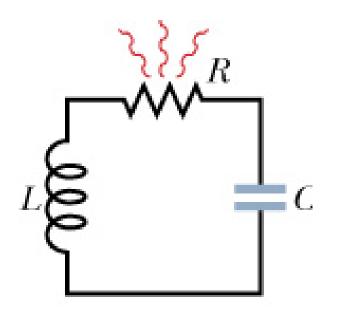
RLC Circuit

→The loop rule tells us

$$L\frac{di}{dt} + Ri + \frac{q}{C} = 0$$

 \rightarrow Use i = dq/dt, divide by L

$$\frac{d^2q}{dt^2} + \frac{R}{L}\frac{dq}{dt} + \frac{q}{LC} = 0$$

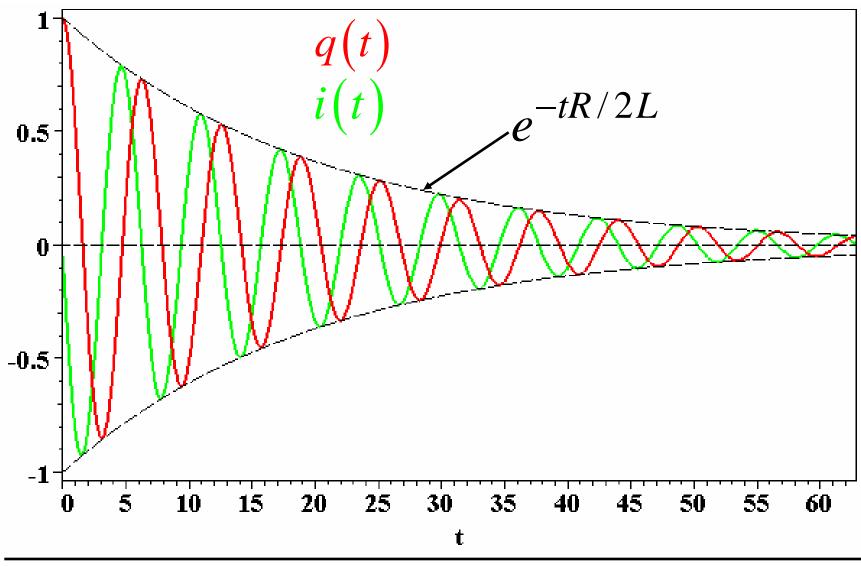


→ Solution slightly more complicated than LC case

$$q = q_{\max} e^{-tR/2L} \cos(\omega' t + \theta) \quad \omega' = \sqrt{1/LC - (R/2L)^2}$$

This is a damped oscillator (similar to mechanical case)
 Amplitude of oscillations falls exponentially

Charge and Current vs t in RLC Circuit



RLC Circuit Example

→ Circuit parameters

• L = 12mL, C = $1.6\mu F$, R = 1.5Ω

- →Calculate ω , ω ', f and T
 - $\bullet \omega = 7220 \text{ rad/s}$
 - ♦ ω' = 7220 rad/s

$$\bullet$$
 f = $\omega/2\pi$ = 1150 Hz

◆ T = 1/f = 0.00087 sec

$$\omega = 1/\sqrt{(0.012)(1.6 \times 10^{-6})} = 7220$$
$$\omega' = \sqrt{7220^2 - (1.5/0.024)^2} \simeq \omega$$

→Time for q_{max} to fall to ½ its initial value e^{-tR/2L} = 1/2
♦ t = (2L/R) * ln2 = 0.0111s = 11.1 ms
periods = 0.0111/.00087 ≈ 13

RLC Circuit (Energy)

$$L\frac{di}{dt} + Ri + \frac{q}{C} = 0$$

Basic RLC equation

$$L\frac{di}{dt}i + Ri^2 + \frac{q}{C}\frac{dq}{dt} = 0$$

$$\frac{d}{dt}\left(\frac{1}{2}Li^2 + \frac{1}{2}\frac{q^2}{C}\right) = -i^2R$$

$$\frac{d}{dt} \left(U_L + U_C \right) = -i^2 R$$

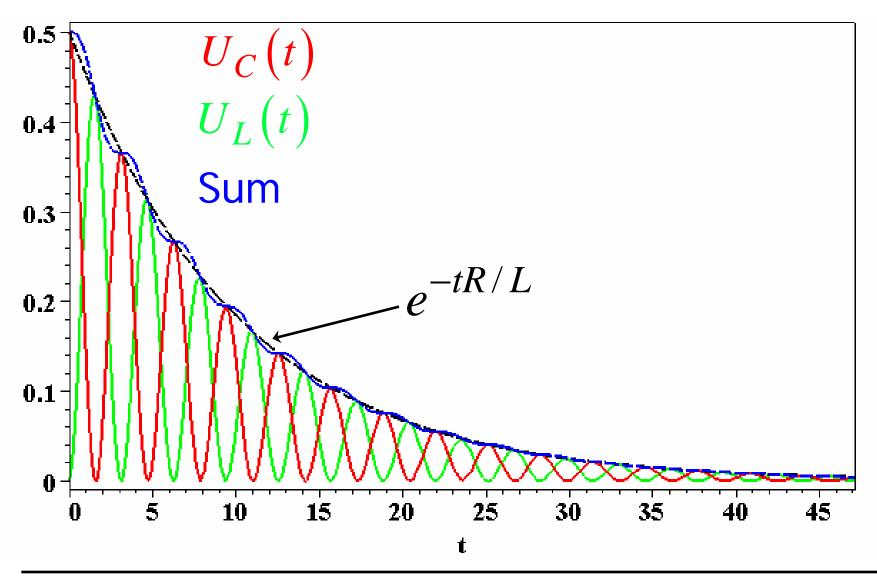
$$U_{\rm tot} \sim e^{-tR/L}$$

Multiply by i = dq/dt

Collect terms (similar to LC circuit)

Total energy in circuit decreases at rate of i²R (dissipation of energy)

Energy in RLC Circuit



PHY2049: Chapter 31