PHY2049 Exam \#1 Solutions - Fall 2012

1. Two identical conducting spheres A and B carry equal charge Q. They are separated by a distance much larger than their diameters. A third identical conducting sphere C carries charge 2 Q . Sphere C is first touched to A , then to B , and finally removed. As a result, the electrostatic force between A and B , which was originally F, becomes:

Solution:

After C touches A, $Q_{A}=Q_{C} ; Q_{A}+Q_{C}=3 Q \Rightarrow Q_{A}=Q_{C}=\frac{3 Q}{2}$.
Then C touches $\mathrm{B}, Q_{B}=Q^{\prime}{ }_{C} ; Q_{B}+Q^{\prime}{ }_{C}=\frac{5 Q}{2} \Rightarrow Q_{B}=Q^{\prime}{ }_{C}=\frac{5 Q}{4}$.
Coulomb's law gives $F^{\prime}=\frac{k Q_{A} Q_{B}}{r^{2}}=\frac{15}{8} \frac{k Q Q}{r^{2}}=\frac{15 F}{8}$.
2. In the figure shown, what is the magnitude of the net electric force (in N) exerted on charge q_{2} by charges q_{1} and q_{3}, given that $\mathrm{d}_{1}=3 \mathrm{~nm}$ and $\mathrm{d}_{2}=6 \mathrm{~nm}$?

Solution:

The x and y components of Coulomb force on q_{2} are

$$
F_{x}=\frac{24 k e^{2}}{d_{2}^{2}}=1.54 \times 10^{-10} N ; F_{y}=\frac{2 k e^{2}}{d_{1}^{2}}=0.51 \times 10^{-10} \mathrm{~N}
$$

The net force is $F=\sqrt{F_{x}^{2}+F_{y}^{2}}=1.6 \times 10^{-10} N$.
3. Four charges are at the corners of a square, with B and C on opposite
corners. Charges A and D, on the other two corners, have equal charge, while both B and C have a charge of +1.0 C . What is the charge on A so that the force on B is zero?

Solution:

Let the side of the square to be a. The Coulomb forces on charge C by A and D add up to a force along the diagonal direction. For the net force on B to be zero, we need

$$
2 \cos 45^{\circ} \frac{k Q Q_{B}}{a^{2}}+\frac{k Q_{C} Q_{B}}{(\sqrt{2} a)^{2}}=0
$$

Solving for Q , we have $Q=-\frac{Q_{C}}{4 \cos 45^{\circ}}=-0.35 C$
4. Two charges, q_{1} and q_{2} lie a distance $\mathrm{d}=3 \mathrm{~cm}$ apart on the x -axis. Charge q_{1} is located at the origin and q_{2} is located at $x=3 \mathrm{~cm}$. At what position on the x-axis (in cm) is the magnitude of the electric field equal to zero?

Solution:

The electric field can only vanish between the two positive charges. The fields from two charges must have the same magnitude

$$
\frac{k(2 e)}{x^{2}}=\frac{k(4 e)}{(d-x)^{2}}
$$

Solve for x, we find $x=1.24 \mathrm{~cm}$.
5. The diagrams below depict four different charge distributions. The charged particles are all the same distance from the origin. The electric field at the origin:

1

2

3

4
A) is zero for situation 4
6. Three large parallel charged insulating sheets have charge per unit area of $\sigma_{1}=2 \mu \mathrm{C} / \mathrm{m}^{2}, \sigma_{2}=$ $-4 \mu \mathrm{C} / \mathrm{m}^{2}, \sigma_{3}$. What is the charge density of sheet 3 , in order for the electric field to be zero in the region between sheets 2 and 3 ?

Solution:

In the region between sheets 2 and 3, the electric field is given by $E=\frac{\sigma_{1}}{2 \varepsilon_{0}}+\frac{\sigma_{2}}{2 \varepsilon_{0}}-\frac{\sigma_{3}}{2 \varepsilon_{0}}$. In order for the electric field to be zero, we have $\sigma_{3}=\sigma_{1}+\sigma_{2}=-2 \frac{\mu C}{m^{2}}$.
7. A conducting sphere of radius 1 cm is surrounded by a conducting spherical shell of inner radius 3 cm and outer radius 4 cm . If the electric field at $\mathrm{r}=2 \mathrm{~cm}$ is going outwards with magnitude $300 \mathrm{~V} / \mathrm{cm}$ and at $\mathrm{r}=5 \mathrm{~cm}$ is also going outwards with magnitude $300 \mathrm{~V} / \mathrm{cm}$. What is the net charge on conducting spherical shell?

Solution:

Make a Gauss surface consists of sphere of radius $r_{1}=2 \mathrm{~cm}$ and sphere of radius $r_{2}=5 \mathrm{~cm}$ with the conducting spherical shell inside the Gauss surface. Apply Gauss' law, we have

$$
\frac{Q_{\text {shell }}}{\varepsilon_{0}}=\oint \vec{E} \cdot d \vec{A}=4 \pi r_{2}^{2} E_{2}-4 \pi r_{1}^{2} E_{1}
$$

Using the data of the problem, $\mathrm{Q}_{\text {shell }}=7 \mathrm{nC}$. Alternatively, using shell theorem, we have

$$
E_{1}=\frac{Q_{\text {sphere }}}{4 \pi \varepsilon_{0} r_{1}^{2}} ; E_{2}=\frac{Q_{\text {sphere }}+Q_{\text {shell }}}{4 \pi \varepsilon_{0} r_{2}^{2}}
$$

Solve them to find charges. $\mathrm{Q}_{\text {shell }}=7 \mathrm{nC}$.
8. Choose the INCORRECT statement:
A) According to Gauss' law, if a closed surface encloses no charge, then the electric field must vanish everywhere on the surface
9. Charge Q is distributed uniformly throughout an insulating sphere of radius R. The magnitude of the electric field at a point $2 R / 3$ from the center is:

Solution:

Applying Gauss' law to a spherical surface of radius $r(r<R)$, we have

$$
4 \pi r^{2} E=\frac{\frac{4}{3} \pi r^{3} \rho}{\varepsilon_{0}}=\frac{Q}{\varepsilon_{0}} \cdot\left(\frac{r}{R}\right)^{3} \Rightarrow E=\frac{Q}{4 \pi \varepsilon_{0} R^{2}} \frac{r}{R} \Rightarrow E=\frac{Q}{6 \pi \varepsilon_{0} R^{2}} .
$$

10. A $3.5-\mathrm{cm}$ radius hemisphere contains a total charge of $6.6 \times 10^{-7} \mathrm{C}$. The flux through the rounded portion of the surface is $9.8 \times 10^{4} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$. The flux through the flat base is:

Solution:

Applying Gauss' law to surface of the hemisphere, we have

$$
\begin{gathered}
\frac{Q}{\varepsilon_{0}}=\oint \vec{E} \cdot d \vec{A}=\int_{\text {base }} \vec{E} \cdot d \vec{A}+\int_{\text {top }} \vec{E} \cdot d \vec{A} \\
\int_{\text {base }} \vec{E} \cdot d \vec{A}=\frac{Q}{\varepsilon_{0}}-\int_{\text {top }} \vec{E} \cdot d \vec{A}=\frac{6.6 \times 10^{-7}}{8.85 \times 10^{-12}}-9.8 \times 10^{4}=-2.3 \times 10^{4} \frac{\mathrm{Nm}^{2}}{\mathrm{C}} .
\end{gathered}
$$

11. Two conducting spheres are far apart. The smaller sphere carries a total charge of Q . The larger sphere has a radius three times that of the smaller sphere and is neutral. After the two spheres are connected by a conducting wire, the charges on the smaller and larger spheres, respectively, are:

Solution:

The charge Q will be shared between the two spheres so that the potentials on them (V_{1} and V_{2}) become equal (with difference of potentials becoming zero, there will be no current through the wire connecting the two spheres). The charge acquired by the larger sphere will be q , the charge left on the smaller sphere will be Q-q.
$V_{1}=\frac{Q-q}{r} k+\frac{q}{D} k \approx \frac{Q-q}{r} k$ (since distance D between the spheres is very large)
$V_{2}=\frac{Q-q}{D} k+\frac{q}{3 r} k \approx \frac{q}{3 r} k$ (since distance D between the spheres is very large)
Require $V_{1}=V_{2}$
$\frac{Q-q}{r} k=\frac{q}{3 r} k$
From where:
$q=\frac{3}{4} Q \quad$ (charge on the larger sphere)
$Q-q=\frac{1}{4} Q \quad$ (charge on the smaller sphere)
12. A particle with a charge of $5.5 \times 10^{-8} \mathrm{C}$ is fixed at the origin. A particle with a charge of -2.3 $\times 10^{-8} \mathrm{C}$ is moved from $x=3.5 \mathrm{~cm}$ on the x axis to $y=4.3 \mathrm{~cm}$ on the y axis. The change in potential energy of the two-particle system is:

Solution:

Potential energy at the beginning: $U_{i}=\frac{q_{1} q_{2}}{r_{i}} k$
Potential energy at the end: $U_{f}=\frac{q_{1} q_{2}}{r_{f}} k$
where r_{i} and r_{f} are distances between charges at the beginning and at the end.

From where:

$$
\Delta U=U_{f}-U_{i}=q_{1} q_{2} k\left(\frac{1}{r_{f}}-\frac{1}{r_{i}}\right)=6.0 \times 10^{-5} \mathrm{~J}
$$

13. In separate experiments, four different particles each start from far away with the same speed and impinge directly on a gold nucleus. The masses and charges of the particles are
particle 1: mass m_{0}, charge q_{0}
particle 2: mass $2 m_{0}$, charge $2 q_{0}$
particle 3: mass $2 m_{0}$, charge $q_{0} / 2$
particle 4: mass $m_{0} / 2$, charge $2 q_{0}$
Rank the particles according to the distance of closest approach to the gold nucleus, from smallest to largest.

Solution:

Potential energy at the beginning: $U_{i}=\frac{Q q}{R} k \approx 0$ (particles are far apart)
Kinetic energy at the beginning: $K E_{i}=\frac{m v^{2}}{2}$
Potential energy at the end: $U_{f}=\frac{Q q}{r} k$
Kinetic energy at the beginning: $K E_{f}=0$

From energy conservation:
$r=2 \frac{Q k}{v^{2}} \cdot \frac{q}{m}$

Ranking of the closest approach to the gold nucleous comes from q / m :

- particle 3 has the smallest $\mathrm{q} / \mathrm{m}=1 / 4 \cdot \mathrm{q}_{0} / \mathrm{m}_{0}$ and, hence, comes the closest
- particle 4 has the largest $\mathrm{q} / \mathrm{m}=4 \cdot \mathrm{q}_{0} / \mathrm{m}_{0}$ and, hence, comes the last in ranking
- particles 1 and 2 have equal $q / m=q_{0} / m_{0}$ and, hence, come tie in between particles 3 and 4

14. Two conducting spheres have radii of R_{1} and R_{2}. If they are far apart the capacitance is proportional to:

Solution:

The capacitance between two objects is, by definition, $\mathrm{C}=\mathrm{Q} / \Delta \mathrm{V}$, where Q and -Q are charges placed on the two objects and $\Delta \mathrm{V}$ is the difference of potentials between the two objects produced by the two charges.
$V_{1}=\frac{Q}{R_{1}} k+\frac{-Q}{D} k \approx \frac{Q}{R_{1}} k$ (since distance D between the spheres is very large)
$V_{2}=\frac{-Q}{R_{2}} k+\frac{Q}{D} k \approx \frac{-Q}{R_{2}} k$ (since distance D between the spheres is very large)
$\Delta V=\frac{Q}{R_{1}} k-\left(\frac{-Q}{R_{2}} k\right)=Q k \frac{R_{2}+R_{1}}{R_{1} R_{2}}$
$C=\frac{Q}{\Delta V}=\frac{R_{1} R_{2}}{R_{2}+R_{1}} \cdot \frac{1}{k}$
15. What is the equivalent capacitance of the combination shown?

Solution:

The top two capacitors are connected in series:
$1 / \mathrm{C}=1 / 12+1 / 24$. From where $\mathrm{C}=8 \mu \mathrm{~F}$

Next step: 8 and $12 \mu \mathrm{~F}$ capacitors are connected in parallel $\mathrm{C}=8+12=20 \mu \mathrm{~F}$

The last step: the two $20 \mu \mathrm{~F}$ capacitors are connected in series. The equivalent capacitance is 10 $\mu \mathrm{F}$.
16. An air-filled parallel-plate capacitor has a capacitance of 3 pF . The plate separation is then tripled and a wax dielectric is inserted, completely filling the space between the plates. As a result, the capacitance becomes 6 pF . The dielectric constant of the wax is:

Solution:

Initial capacitance $C_{i}=\frac{A \varepsilon_{0}}{d}$
Final capacitance $C_{f}=\frac{A \varepsilon_{0} \kappa}{3 d}$
From where: $\kappa=3 \frac{C_{f}}{C_{i}}=6$
17. A certain wire has resistance R. Another wire, of the same material, has half the length and half the diameter of the first wire. The resistance of the second wire is:

Solution:

Resistance of the first wire $R=\rho \frac{L}{\pi r^{2}}$
Resistance of the second wire $R_{x}=\rho \frac{(L / 2)}{\pi(r / 2)^{2}}=2 \rho \frac{L}{\pi r^{2}}=2 R$
18. A certain resistor dissipates 0.5 W when connected to a 3 V potential difference. When connected to a 1 V potential difference, this resistor will dissipate:

Solution:

Power dessipated when resistor R is connected to $V_{1}=3 \mathrm{~V}: W_{1}=\frac{V_{1}^{2}}{R}$
From here : $R=\frac{V_{1}^{2}}{W_{1}}$
Power dessipated by the same resistor R connected to $V_{2}=1 \mathrm{~V}: W_{2}=\frac{V_{2}^{2}}{R}=W_{1} \frac{V_{2}^{2}}{V_{1}^{2}}=0.056 \mathrm{~W}$
19. In the figure shown, what is the current through the 5Ω resistor?

Solution:

Junction rule for currents:
$i=i_{1}+i_{2}$
Potential rule for the loop No.1:
$-10 \cdot i-3+8-10 \cdot i_{1}+5=0$
Potential rule for the loop No.2: $\quad-2 \cdot i_{2}-5 \cdot i_{2}-10 \cdot i-3+8-3 \cdot i_{2}=0$

From where one can find that: $\quad i_{2}=0, \quad i=i_{1}=0.5 \mathrm{~A}$
20. A 15Ω resistor and a $16 \mu \mathrm{~F}$ capacitor are connected in series to a 12 V battery. At $t=0.6 \mathrm{~ms}$ after the connection is made, what is the current in the circuit?

Solution:

$i(t)=\frac{E M F}{R} e^{-t / R C}=0.066 \mathrm{~A}$

