Prof. Darin Acosta Prof. Selman Hershfield February 6, 2007

Exam 1 Solutions

Note: Most problems have more than one version with different answers. Be careful that you check your exam against your version of the problem.

1. Two charges, $q_1 = -1$ C and $q_2 = -4$ C *(or vice versa)*, are placed along the x-axis a distance L apart with charge q_1 at the origin and q_2 at x=L (see figure). A third charge, $q_3 = +4/9$ C, is also placed along the x-axis such that there is no net Coulomb force on any of the charges. What is position of this charge along the x axis in units of L, i.e. what is x/L? (1) 1/3 (2) 2/3 (3) 1/2 (4) 4/3 (5) -2/3

Solution:

The only place to place a third charge that is positive is between the two negative charges. If there is no net Coulomb force, we must satisfy for charge 1 the following:

$$F_{x} = k \frac{|q_{1}q_{3}|}{x^{2}} - k \frac{|q_{1}q_{2}|}{L^{2}} = 0$$
$$\frac{x^{2}}{L^{2}} = \frac{|q_{3}|}{|q_{2}|} \qquad \frac{x}{L} = \sqrt{\frac{4/9}{4}} = \frac{1}{3}$$

If q_1 and q_2 are swapped, then the answer would be 2/3.

2. Three charges form an equilateral triangle of side length d = 20cm as shown in the figure. If $q_A = -1$ nC, $q_B = +2$ nC, and $q_C = +1$ nC what is the horizontal x component *(or y component)* of the net electrostatic force on particle A?

(1) -1.13×10^{-7} N (2) -5.85×10^{-7} N (3) -1.95×10^{-7} N (4) -2.25×10^{-7} N (5) 0 N

Solution:

Work out the x and y components of the force on particle A:

$$F_{x} = -K \frac{|q_{A}q_{B}|}{d^{2}} \sin 30^{\circ} + K \frac{|q_{A}q_{C}|}{d^{2}} \sin 30^{\circ}$$

= 1.1 10⁻⁷ N
$$F_{y} = -K \frac{|q_{A}q_{B}|}{d^{2}} \cos 30^{\circ} - K \frac{|q_{A}q_{C}|}{d^{2}} \cos 30^{\circ}$$

= 5.8 10⁻⁷ N

3. Two electrons each with mass $m_e = 9.11 \times 10^{-31}$ kg are spaced 1mm apart. What is the magnitude of the acceleration for one of the electrons?

(1) $2.5 \times 10^8 \text{ m/s}^2$ (2) $2.3 \times 10^{-22} \text{ m/s}^2$ (3) $1.25 \times 10^8 \text{ m/s}^2$ (4) $2.5 \times 10^{46} \text{ m/s}^2$ (5) 250 m/s^2

Solution:

Set the coulomb force equal to m*a and solve for acceleration:

$$a = \frac{|\mathbf{F}|}{m} = k \frac{e^2}{(0.001m)^2 (9.11 \ 10^{-31} kg)} = 2.5 \ 10^8 \ \text{m/s}^2$$

4. Consider electric charge Q = +3nC distributed uniformly along a one-dimensional path in the shape of a semicircle of radius R=0.1m. Find the component of the electric field along the y-axis at the origin (0,0).

(1) -1700 N/C (2) -2700 N/C (3) 0 (4) +1700 N/C (5) +2700 N/C

Solution:

By symmetry, the x component of the field cancels at the origin and we only have the y component, which points in the negative y direction since the field points away from positive charge. The linear charge density is $\lambda = +Q/\pi R$ for the semicircle. So computing the y component of the field:

$$E_{y} = dE_{y} = -k \frac{dq}{R^{2}} \sin \phi = -\frac{\pi}{0} k \frac{\lambda R d\phi}{R^{2}} \sin \phi$$
$$E_{y} = \frac{k\lambda}{R} \cos \phi \Big|_{0}^{\pi} = -\frac{2k\lambda}{R} = -\frac{2kQ}{\pi R^{2}} = -1700 \text{ N/C}$$

5. What is the x component (or the y component) of the electric field at the origin (center) of the hexagonal array of charged particles. The side length s=20cm and $q=5 \times 10^{-9}$ C. (1) 1130 N/C (2) 2250 N/C (3) 3380 N/C (4) -1950 N/C (5) 0

Solution:

Note that the field cancels for all opposing pairs of particles **except** for +2q in the top left corner. The net field points down and to the right. The distance from that charge to the origin is s. So the components of the field are:

$$E_x = k \frac{2q}{s^2} \cos 60^\circ = (9 \ 10^9) \frac{2(5 \ 10^{-9})}{0.2^2} \frac{1}{2} = 1125 \text{ N/C}$$
$$E_y = -k \frac{2q}{s^2} \sin 60^\circ = -(9 \ 10^9) \frac{2(5 \ 10^{-9})}{0.2^2} \frac{\sqrt{3}}{2} = -1950 \text{ N/C}$$

6. A cube of side 2 m has one corner at the origin as shown in the figure. If $\vec{E} = (1+x^2)\hat{i} + (2+2y^2)\hat{j} + (3+3z^2)\hat{k}$ V/m when x, y, and z are measured in meters, what is the flux through the top face?

<u>Solution</u>: Because the electric field is constant on each face of the cube, the flux is $\Phi = \hat{n} \cdot \vec{E} A$:

$$\Phi_{top} = \hat{k} \cdot \vec{E}(z=2) A = 60 V \cdot m$$

$$\Phi_{bottom} = -\hat{k} \cdot \vec{E}(z=0) A = -12 V \cdot m$$

$$\Phi_{left} = -\hat{j} \cdot \vec{E}(y=0) A = -8 V \cdot m$$

$$\Phi_{right} = \hat{j} \cdot \vec{E}(y=2) A = 40 V \cdot m$$

7. A conducting sphere is inside a conducting shell as shown in the figure. The net charge on the sphere is $-3\mu C$, and the net charge on the shell is $5\mu C$. If a = 1 m, b = 2 m, and c = 2.5 m, what is the magnitude and direction of the electric field at r = 1.5 m?

<u>Solution</u>: Apply Gauss' Law, $\Phi = \hat{n} \cdot EA = Q_{enc}/\epsilon_o$, to a sphere of radius r = 1.5m, which is in between the sphere and the outside shell $(A = 4\pi r^2)$. The charge enclosed is thus the charge on the sphere. For $-3\mu C$ on the sphere, $\hat{n} \cdot \vec{E} = -12000 V/m$, and for $-2\mu C$ on the sphere, $\hat{n} \cdot \vec{E} = -8000 V/m$. The fact that these are negative implies that the field is directed inwards.

8. The electric field in the x direction is plotted in the figure. If V(0) = 2 V and $E_s = 6$ V/m, what is the voltage at x = 2 m?

Solution: The voltage is related to the area under the electric field graph.

$$V(x) = V(0) - \int_0^x E_x dx'$$

The slope of the graph is $-E_s/3$, and consequently the electric field at x = 2m is $-2E_s/3$. The integral is the area under the graph, which is negative.

$$V(2) = V(0) + \frac{1}{2} 2 \frac{2E_s}{3}$$

For $E_s = 6V/m$, V(2) = 6V, and for $E_s = 3V/m$, V(2) = 4V.

9. An infinite plane with charge density $\sigma = 4 \times 10^{-6} C/m^2$ lies in the x = 0 plane (see figure). A particle with charge $3 \times 10^{-6}C$ is moved from (x, y, z) = (1, 1, 0) to (x, y, z) = (2, 2, 0), where distances are measured in meters. What is the change in potential energy of the particle, $U_f - U_i$?

<u>Solution</u>: The electric field on the right is $\sigma/2\epsilon_o$ to the right. If you do not remember this, it can easily be derived from Gauss' Law. The force on the particle is $|F| = q\sigma/2\epsilon_o$ to the right. The change in the potential energy is

$$U_f - U_i = -\int \vec{F} \cdot \vec{s} = -|F|(x_f - x_i) = -0.68J_i$$

10. Two protons are initially at rest and separated by a distance of 1 cm. They are both released and move away from each other. What is the speed of one of the protons when they are infinitely far away?

<u>Solution</u>: This is a conservation of energy problem, $K_i + U_i = K_f + U_f$,

$$0 + \frac{e^2}{4\pi\epsilon_o d} = \frac{1}{2}m_p v_f^2 + \frac{1}{2}m_p v_f^2,$$

which implies that

$$v_f = \sqrt{\frac{e^2}{4\pi\epsilon_o dm_p}}.$$

For $d = 1 \, cm$, $v_f = 3.7 \, m/s$, and for $d = 1 \, mm$, $v_f = 11.7 \, m/s$. Because these answers are not exactly on the answer sheet, for $d = 1 \, cm$ we are counting both 5.2 m/s and 3.3 m/s as correct, and for $d = 1 \, mm$ we are counting both 16.6 m/s and 12.4m/s as correct. This also accounts for students who thought one of the protons was fixed.