Prof. Darin Acosta
Prof. Selman Hershfield
February 6, 2007

Exam 1 Solutions

Note: Most problems have more than one version with different answers. Be careful that you check your exam against your version of the problem.

1. Two charges, $\mathrm{q}_{1}=-1 \mathrm{C}$ and $\mathrm{q}_{2}=-4 \mathrm{C}$ (or vice versa), are placed along the x -axis a distance L apart with charge q_{1} at the origin and q_{2} at $x=L$ (see figure). A third charge, $q_{3}=$ $+4 / 9 \mathrm{C}$, is also placed along the x -axis such that there is no net Coulomb force on any of the charges. What is position of this charge along the x axis in units of L, i.e. what is x / L ?
(1) $1 / 3$
(2) $2 / 3$
(3) $1 / 2$
(4) $4 / 3$
(5) $-2 / 3$

Solution:
The only place to place a third charge that is positive is between the two negative charges. If there is no net Coulomb force, we must satisfy for charge 1 the following:
$F_{x}=k \frac{\left|q_{1} q_{3}\right|}{x^{2}}-k \frac{\left|q_{1} q_{2}\right|}{L^{2}}=0$
$\frac{x^{2}}{L^{2}}=\frac{\left|q_{3}\right|}{\left|q_{2}\right|} \quad \frac{x}{L}=\sqrt{\frac{4 / 9}{4}}=\frac{1}{3}$
If q_{1} and q_{2} are swapped, then the answer would be $2 / 3$.
2. Three charges form an equilateral triangle of side length $d=20 \mathrm{~cm}$ as shown in the figure. If $\mathrm{q}_{\mathrm{A}}=-1 \mathrm{nC}, \mathrm{q}_{\mathrm{B}}=+2 \mathrm{nC}$, and $\mathrm{q}_{\mathrm{C}}=+1 \mathrm{nC}$ what is the horizontal x component (or y component) of the net electrostatic force on particle A ?
(1) $-1.13 \times 10^{-7} \mathrm{~N}$
(2) $-5.85 \times 10^{-7} \mathrm{~N}$
(3) $-1.95 \times 10^{-7} \mathrm{~N}$
(4) $-2.25 \times 10^{-7} \mathrm{~N}$
(5) 0 N

Solution:
Work out the x and y components of the force on particle A :
$F_{x}=-K \frac{\left|q_{A} q_{B}\right|}{d^{2}} \sin 30^{\circ}+K \frac{\left|q_{A} q_{C}\right|}{d^{2}} \sin 30^{\circ}$
$=1.1 \quad 10^{-7} \mathrm{~N}$
$F_{y}=-K \frac{\left|q_{A} q_{B}\right|}{d^{2}} \cos 30^{\circ}-K \frac{\left|q_{A} q_{C}\right|}{d^{2}} \cos 30^{\circ}$
$=5.8 \quad 10^{-7} \mathrm{~N}$
3. Two electrons each with mass $\mathrm{m}_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg}$ are spaced 1 mm apart. What is the magnitude of the acceleration for one of the electrons?
(1) $2.5 \times 10^{8} \mathrm{~m} / \mathrm{s}^{2}$
(2) $2.3 \times 10^{-22} \mathrm{~m} / \mathrm{s}^{2}$
(3) $1.25 \times 10^{8} \mathrm{~m} / \mathrm{s}^{2}$
(4) $2.5 \times 10^{46} \mathrm{~m} / \mathrm{s}^{2}$
(5) $250 \mathrm{~m} / \mathrm{s}^{2}$

Solution:
Set the coulomb force equal to $\mathrm{m}^{*} \mathrm{a}$ and solve for acceleration:
$a=\frac{|\mathbf{F}|}{m}=k \frac{e^{2}}{(0.001 m)^{2}\left(9.11 \quad 10^{-31} \mathrm{~kg}\right)}=2.510^{8} \mathrm{~m} / \mathrm{s}^{2}$
4. Consider electric charge $\mathrm{Q}=+3 \mathrm{nC}$ distributed uniformly along a one-dimensional path in the shape of a semicircle of radius $\mathrm{R}=0.1 \mathrm{~m}$. Find the component of the electric field along the y -axis at the origin $(0,0)$.
(1) $-1700 \mathrm{~N} / \mathrm{C}(2)-2700 \mathrm{~N} / \mathrm{C}$ (3) $0(4)+1700 \mathrm{~N} / \mathrm{C}(5)+2700 \mathrm{~N} / \mathrm{C}$

Solution:
By symmetry, the x component of the field cancels at the origin and we only have the y component, which points in the negative y direction since the field points away from positive charge. The linear charge density is $\lambda=+\mathrm{Q} / \pi \mathrm{R}$ for the semicircle. So computing the y component of the field:

$$
\begin{aligned}
& E_{y}=d E_{y}=-k \frac{d q}{R^{2}} \sin \phi=-{ }_{0}^{\pi} k \frac{\lambda R d \phi}{R^{2}} \sin \phi \\
& E_{y}=\left.\frac{k \lambda}{R} \cos \phi\right|_{0} ^{\pi}=-\frac{2 k \lambda}{R}=-\frac{2 k Q}{\pi R^{2}}=-1700 \mathrm{~N} / \mathrm{C}
\end{aligned}
$$

5. What is the x component (or the y component) of the electric field at the origin (center) of the hexagonal array of charged particles. The side length $s=20 \mathrm{~cm}$ and $\mathrm{q}=5 \times 10^{-9} \mathrm{C}$.
(1) $1130 \mathrm{~N} / \mathrm{C}(2) 2250 \mathrm{~N} / \mathrm{C}$
(3) 3380 N/C (4) -1950 N/C (5) 0

Solution:
Note that the field cancels for all opposing pairs of particles except for +2 q in the top left corner. The net field points down and to the right. The distance from that charge to the origin is s. So the components of the field are:

$$
\begin{aligned}
& E_{x}=k \frac{2 q}{s^{2}} \cos 60^{\circ}=\left(\begin{array}{ll}
9 & 10^{9}
\end{array}\right) \frac{2\left(5 \quad 10^{-9}\right)}{0.2^{2}} \frac{1}{2}=1125 \mathrm{~N} / \mathrm{C} \\
& E_{y}=-k \frac{2 q}{s^{2}} \sin 60^{\circ}=-\left(\begin{array}{ll}
9 & 10^{9}
\end{array}\right) \frac{2\left(5 \quad 10^{-9}\right.}{0.2^{2}} \frac{\sqrt{3}}{2}=-1950 \mathrm{~N} / \mathrm{C}
\end{aligned}
$$

6. A cube of side 2 m has one corner at the origin as shown in the figure. If $\vec{E}=\left(1+x^{2}\right) \hat{i}+\left(2+2 y^{2}\right) \hat{j}+\left(3+3 z^{2}\right) \hat{k} \mathrm{~V} / \mathrm{m}$ when x, y, and z are measured in meters, what is the flux through the top face?

Solution: Because the electric field is constant on each face of the cube, the flux is $\Phi=\hat{n} \cdot \vec{E} A$:

$$
\begin{aligned}
\Phi_{\text {top }} & =\hat{k} \cdot \vec{E}(z=2) A=60 \mathrm{~V} \cdot \mathrm{~m} \\
\Phi_{\text {bottom }} & =-\hat{k} \cdot \vec{E}(z=0) A=-12 \mathrm{~V} \cdot \mathrm{~m} \\
\Phi_{\text {left }} & =-\hat{j} \cdot \vec{E}(y=0) A=-8 \mathrm{~V} \cdot \mathrm{~m} \\
\Phi_{\text {right }} & =\hat{j} \cdot \vec{E}(y=2) A=40 \mathrm{~V} \cdot \mathrm{~m}
\end{aligned}
$$

7. A conducting sphere is inside a conducting shell as shown in the figure. The net charge on the sphere is $-3 \mu C$, and the net charge on the shell is $5 \mu C$. If $a=1 \mathrm{~m}, b=2 \mathrm{~m}$, and $c=2.5 \mathrm{~m}$, what is the magnitude and direction of the electric field at $r=1.5 \mathrm{~m}$?

Solution: Apply Gauss' Law, $\Phi=\hat{n} \cdot E A=Q_{\text {enc }} / \epsilon_{o}$, to a sphere of radius $r=1.5 m$, which is in between the sphere and the outside shell $\left(A=4 \pi r^{2}\right)$. The charge enclosed is thus the charge on the sphere. For $-3 \mu C$ on the sphere, $\hat{n} \cdot \vec{E}=-12000 V / m$, and for $-2 \mu C$ on the sphere, $\hat{n} \cdot \vec{E}=-8000 \mathrm{~V} / \mathrm{m}$. The fact that these are negative implies that the field is directed inwards.
8. The electric field in the x direction is plotted in the figure. If $V(0)=2 \mathrm{~V}$ and $E_{s}=6 \mathrm{~V} / \mathrm{m}$, what is the voltage at $x=2 \mathrm{~m}$?

Solution: The voltage is related to the area under the electric field graph.

$$
V(x)=V(0)-\int_{0}^{x} E_{x} d x^{\prime}
$$

The slope of the graph is $-E_{s} / 3$, and consequently the electric field at $x=2 m$ is $-2 E_{s} / 3$. The integral is the area under the graph, which is negative.

$$
V(2)=V(0)+\frac{1}{2} 2 \frac{2 E_{s}}{3}
$$

For $E_{s}=6 V / m, V(2)=6 V$, and for $E_{s}=3 V / m, V(2)=4 V$.
9. An infinite plane with charge density $\sigma=4 \times 10^{-6} \mathrm{C} / \mathrm{m}^{2}$ lies in the $x=0$ plane (see figure). A particle with charge $3 \times 10^{-6} \mathrm{C}$ is moved from $(x, y, z)=(1,1,0)$ to $(x, y, z)=(2,2,0)$, where distances are measured in meters. What is the change in potential energy of the particle, $U_{f}-U_{i}$?

Solution: The electric field on the right is $\sigma / 2 \epsilon_{o}$ to the right. If you do not remember this, it can easily be derived from Gauss' Law. The force on the particle is $|F|=q \sigma / 2 \epsilon_{o}$ to the right. The change in the potential energy is

$$
U_{f}-U_{i}=-\int \vec{F} \cdot \vec{s}=-|F|\left(x_{f}-x_{i}\right)=-0.68 J
$$

10. Two protons are initially at rest and separated by a distance of 1 cm . They are both released and move away from each other. What is the speed of one of the protons when they are infinitely far away?

Solution: This is a conservation of energy problem, $K_{i}+U_{i}=K_{f}+U_{f}$,

$$
0+\frac{e^{2}}{4 \pi \epsilon_{o} d}=\frac{1}{2} m_{p} v_{f}^{2}+\frac{1}{2} m_{p} v_{f}^{2}
$$

which implies that

$$
v_{f}=\sqrt{\frac{e^{2}}{4 \pi \epsilon_{o} d m_{p}}}
$$

For $d=1 \mathrm{~cm}, v_{f}=3.7 \mathrm{~m} / \mathrm{s}$, and for $d=1 \mathrm{~mm}, v_{f}=11.7 \mathrm{~m} / \mathrm{s}$. Because these answers are not exactly on the answer sheet, for $d=1 \mathrm{~cm}$ we are counting both $5.2 \mathrm{~m} / \mathrm{s}$ and $3.3 \mathrm{~m} / \mathrm{s}$ as correct, and for $d=1 \mathrm{~mm}$ we are counting both $16.6 \mathrm{~m} / \mathrm{s}$ and $12.4 \mathrm{~m} / \mathrm{s}$ as correct. This also accounts for students who thought one of the protons was fixed.

