Dimensional Analysis

ALL units are expressed in terms of three basic quantities, mass **M**, length **L**, and time **T**, expressed in Kilogram, Meter, and Second, respectively.

Dimensional Analysis: good physics equations (and good students) balance their MLT's.

- Velocity (v): \mathbf{LT}^{-1} (meters per second)
- Acceleration (a): LT^{-2} (meters per second squared)
- Frequency (f): $\mathbf{T}^{-1} \mathbf{HERZ}$ (per second)
- Momentum (mv): **MLT**⁻¹ (Kg-meters per second)
- Force (*F*): MLT⁻²- NEWTON (Kg-meter per second squared; remember "f = ma")
- Energy (\mathcal{E}): **ML²T**⁻²–**JOULE** (Kg-meter squared per second squared; remember " $\mathcal{E} = mc^{2}$ ")
- Power (\mathcal{P}): **ML**²**T**⁻³– **WATT** (Kg-meter squared per second cubed; energy per unit time)
- Electric Charge (Q): $\mathbf{M}^{\frac{1}{2}} \mathbf{L}^{\frac{3}{2}} \mathbf{T}^{-1}$ **COULOMB** (derived by balancing Coulomb's law)
- Electric Field (E): $\mathbf{M}^{\frac{1}{2}} \mathbf{L}^{-\frac{1}{2}} \mathbf{T}^{-1}$ (force per unit charge)
- Magnetic Field (B): M^{1/2} L^{-3/2} TESLA ("force=charge times velocity times B")
- Voltage (V): $\mathbf{M}^{\frac{1}{2}} \mathbf{L}^{\frac{1}{2}} \mathbf{T}^{-1}$ **VOLT** (Coulomb per meter)
- Current (\mathcal{I}): $\mathbf{M}^{\frac{1}{2}} \mathbf{L}^{\frac{3}{2}} \mathbf{T}^{-2} \mathbf{AMPERE}$ (Coulomb per second)
- Resistance (\mathcal{R}): $\mathbf{L}^{-1}\mathbf{T} \mathbf{OHM}$ (seconds per meter; remember "V = current times resistance")
- Capacitance (C): L FARAD (inverse meter; remember the shopping network: "charge = voltage times capacitance") $\mathcal{R}C$ has units of time
- Inductance (\mathcal{L}): $\mathbf{L}^{-1} \mathbf{T}^{2}$ **HENRY** (\mathcal{LC} has units of \mathbf{T}^{2})