PHY 2049 Exam I Formulae

Coulomb's Law
$$F = k \frac{q_1 q_2}{r^2}$$
 where $k = 9 \times 10^9 \text{ Nm}^2/\text{ C}^2$, r in meter.
 $e = 1.6 \times 10^{-19} \text{ C}$ $\epsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/\text{Nm}^2$ mass of electron = $9.11 \times 10^{-31} \text{ kg}$

Electric Field: $E = k \sum \frac{q_i}{r_i^2} \hat{r_i}$ here the unit vector r[^] is away from the i-th

charge whose magnitude is q_i and which is located at a distance r_i from the point of Observation.

Electric field from a dipole along the axis of the charges: $E = 2k \frac{p}{z^3}$

$$\varepsilon_o \Phi = q_{enc}$$

Gauss' Law: $\Phi = \oint E.dA$ line charge: $E = 2k\frac{\lambda}{r}$

Sheet: $\sigma/2\epsilon_o$

The electric field *outside* a spherical shell of radius R and charge q: $E = k \frac{q}{r^2}$

=

$$E = k \frac{q}{R^3} r \qquad r <$$
R:

$$k \frac{q}{r^2}$$
 $r > R$

R

Potential: $V = U/q = k \sum_{i} \frac{q_i}{r_i}$ $V(f) - V(i) = -\int_i^f E.ds$ Capacitance: q = CV; Parallel $C = \sum C_i$ Series $1/C = \sum 1/C_i$

Uniform charge q on a sphere of radius

$$\int \frac{x dx}{\left(x^2 + a^2\right)^{3/2}} = -\frac{1}{\left(x^2 + a^2\right)^{1/2}}; \qquad \int \frac{dx}{\left(x^2 + a^2\right)^{3/2}} = \frac{x}{a^2 \left(x^2 + a^2\right)^{1/2}}; \qquad \int \frac{dx}{\left(x^2 + a^2\right)^{1/2}} = \ln\left(x + \sqrt{x^2 + a^2}\right)^{1/2};$$