77777

Instructor: Prof. P. Kumar

 $\rm PHY\ 2049$

Name (print, last first):

On my honor, I have neither given nor received unauthorized aid on this examination.

PHYSICS DEPARTMENT

Exam 1, Summer 2010

YOUR TEST NUMBER IS THE 5-DIGIT NUMBER AT THE TOP OF EACH PAGE.

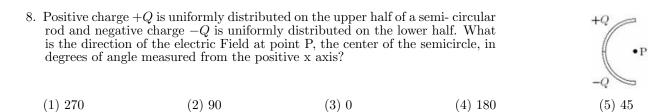
DIRECTIONS

- (1) Code your test number on your answer sheet (use 76–80 for the 5-digit number). Code your name on your answer sheet. Darken circles completely (errors can occur if too light). Code your student number on your answer sheet.
- (2) Blacken the circle of your intended answer completely, using a number 2 pencil. Do not make any stray marks or the answer sheet may not read properly.
- (3) The answers are rounded off. Choose the closest to exact. There is no penalty for guessing.

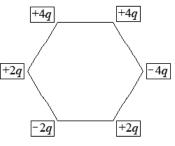
Table of constants			
$k = \frac{1}{4\pi\epsilon_0} = 9 \times 10^9$	$e = 1.6 \times 10^{-19} \mathrm{C}$	$m_e=9.11\times 10^{-31}{\rm kg}$	$c=3\times 10^8 {\rm m/s}$

- 1. Two charges, $q_1 = -1$ C and $q_2 = -4$ C, are placed along the x-axis a distance L apart with charge q_1 at the origin and q_2 at x = L. A third charge, $q_3 = +4/9$ C, is also placed along the x-axis such that there is no net Coulomb force on any of the charges. What is the position of this charge along the x axis in units of L, *i.e.*, what is x/L?
 - (1) $\frac{1}{3}$ (2) $\frac{1}{2}$ (3) 1 (4) 2 (5) 3
- 2. Two charges, $q_1 = 1$ C and $q_2 = 9$ C, are placed along the x-axis a distance L apart with charge q_1 at the origin and q_2 at x = L. A third charge, $q_3 = -9/16$ C, is also placed along the x-axis such that there is no net Coulomb force on any of the charges. What is the position of this charge along the x axis in units of L, *i.e.*, what is x/L?
 - (1) $\frac{1}{4}$ (2) $\frac{1}{3}$ (3) 1 (4) 4 (5) 3
- 3. Suppose we have an insulating spherical ball of uniform charge density ρ and radius R. At what radius or radii from the center of the sphere is the electric field strength reduced by a factor of 16 from the electric field strength at the surface?
 - (1) R/16 and 4R (2) R/4 and 4R (3) R/16 and 16R (4) R/4 and 16R (5) None of these
- 4. Suppose we have an insulating spherical ball of uniform charge density ρ and radius R. At what radius or radii from the center of the sphere is the electric field strength reduced by a factor of 9 from the electric field strength at the surface?
 - (1) R/9 and 3R (2) R/3 and 3R (3) R/9 and 9R (4) R/3 and 9R (5) None of these
- 5. Two isolated conducting spheres are separated by a large distance. Sphere 1 has a radius of R and an initial charge 3Q while sphere 2 has a radius of 3R and an initial charge 7Q. A very thin copper wire is now connected to the spheres. Charge flows between the spheres until they reach the same electrical potential. How much charge will be transferred from sphere 2 to sphere 1? (Note that the charge transferred can be positive, negative or zero .)
 - (1) -Q/2 (2) 2Q (3) -Q/3 (4) 3Q (5) none of these
- 6. Two isolated conducting spheres are separated by a large distance. Sphere 1 has a radius of R and an initial charge 3Q while sphere 2 has a radius of 2R and an initial charge 6Q. A very thin copper wire is now connected to the spheres. Charge flows between the spheres until they reach the same electrical potential. How much charge will be transferred from sphere 2 to sphere 1? (Note that the charge transferred can be positive, negative or zero .)
 - (1) zero (2) 2Q (3) -Q/3 (4) 3Q (5) none of these

77777

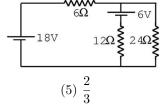

June 7, 2010

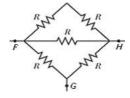
Signature:


77777

7. A charged oil drop with a mass of 3×10^{-4} kg is held suspended by a downward electric field of 300N/C. The charge on the drop is: $(g = 9.80 \text{ m/s}^2)$

(1)
$$-9.8 \times 10^{-6} \text{ C}$$
 (2) $+1.5 \times 10^{-6} \text{ C}$ (3) $-1.5 \times 10^{-6} \text{ C}$ (4) $+9.8 \times 10^{-6} \text{ C}$ (5) 0


- 9. A particle with charge 3μ C is placed at the origin. An identical particle, with the same charge, is placed 2m from the origin on the x axis, and a third identical particle, with the same charge, is placed 2m from the origin on the y axis. The magnitude of the force on the particle at the origin is:
 - (1) 2.9×10^{-2} N (2) 1.4×10^{-2} N (3) 2.0×10^{-2} N (4) 4.0×10^{-2} N (5) 8.1×10^{-2} N
- 10. What is the electric potential at the origin (center) of the hexagonal array of charged particles. The side length s = 20cm and $q = 5 \times 10^{-9}$ C.
 - (1) 1350 V (2) 2250 V
 - (3) 3380 V
 - (4) -1950 V
 - (5) 1130 V
- 11. A point particle with charge q is at the center of a Gaussian surface in the form of a octahedral prism. The electric flux through any one face of the prism is:
 - (1) $q/8\epsilon_0$ (2) $q/6\epsilon_0$ (3) $q/4\epsilon_0$ (4) $q/2\epsilon_0$ (5) none of these
- 12. A point particle with charge q is at the center of a Gaussian surface in the form of a hexahedral prism. The electric flux through any one face of the prism is:
 - (1) $q/6\epsilon_0$ (2) $q/8\epsilon_0$ (3) $q/4\epsilon_0$ (4) $q/2\epsilon_0$ (5) none of these
- 13. A 140 pF capacitor is charged to a potential difference of 60 V, and the charging battery is disconnected. The capacitor is then connected in parallel with a second (initially uncharged) capacitor. If the potential difference across the first capacitor drops to 48 V, what is the capacitance of this second capacitor?
 - (1) 35 pF (2) 20 pF (3) 10 pF (4) 15 pF (5) none of these
- 14. A 140 pF capacitor is charged to a potential difference of 60 V, and the charging battery is disconnected. The capacitor is then connected in parallel with a second (initially uncharged) capacitor. If the potential difference across the first capacitor drops to 52.5 V, what is the capacitance of this second capacitor?
 - (1) 20 pF (2) 35 pF (3) 10 pF (4) 15 pF (5) none of these



77777

- (1) 10 pF (2) 20 pF (3) 35 pF (4) 15 pF (5) none of these
- 16. Two identical light bulbs A and B are connected in series to a constant voltage source. A wire is then connected across B. What is the brightness of A relative to its former brightness?
 - (1) 4 (2) 2 (3) $\frac{1}{2}$ (4) 1 (5) none of these
- 17. Three identical light bulbs A, B and C are connected in series to a constant voltage source. A wire is then connected across B. What is the brightness of A relative to its former brightness?
 - (1) 2.25 (2) 4 (3) 1.5 (4) $\frac{2}{3}$ (5) none of these
- 18. In the circuit shown, what is the current (in amps) flowing through the 18V battery?
 - (1) 1 (2) $\frac{1}{2}$ (3) 2 (4) $\frac{1}{3}$
- 19. What is the equivalent resistance between points F and H? Each Resistor is 5 Ω .
 - $(1) \ 2.5\Omega$
 - $(2) 6.25\Omega$
 - (3) 2.0Ω
 - (4) 3.125Ω
 - (5) none of these

FOLLOWING GROUPS OF QUESTIONS WILL BE SELECTED AS ONE GROUP FROM EACH TYPE TYPE 1 Q# S 1 Q# S 2 TYPE 2 Q# S 3 Q# S 4 TYPE 3 Q# S 5 Q# S 6 TYPE 4 Q# S 11 Q# S 12 TYPE 5 Q# S 13 Q# S 13 Q# S 14 Q# S 15 TYPE 6 Q# S 16 Q# S 17

