
PHY2049 Summer 2012

Instructor: Francisco Rojas

Exam 1 Solution

As customary, choice (a) is the correct answer in all the following problems.

Problem 1

A uniformly charged (thin) non-conducting rod is located on the central axis a distance b

from the center of an uniformly charged non-conducting disk. The length of the rod is L

and has a linear charge density λ. The disk has radius a and a surface charge density σ.

The total force among these two objects is

(1) ~F = λσ
2ε0

(

L+
√
a2 + b2 −

√

(b+ L)2 + a2
)

k̂

(2) ~F = λσa2L
4ε0b2

k̂

(3) ~F = λσa2L
8ε0b2

k̂

(4) ~F = σ
2ε0

(

1− L
√

L2+a2

)

k̂

(5) ~F = λσL2

2ε0
√

L2+a2
k̂

Solution

We saw in class that the electric field created at any point along the central axis is given

by

~E(z) =
σ

2ε0

(

1− z√
a2 + z2

)

k̂

Breaking up the rod into an infinite number of infinitesimally small point charges dq,

we have that the net force on each tiny charge is d~F = dq ~E(z). Summing up all these
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contributions, and using the fact that dq = λ dz gives

~F =

∫

dq
σ

2ε0

(

1− z√
a2 + z2

)

k̂ (1)

=
λσ

2ε0
k̂

∫ b+L

b
dz

(

1− z√
a2 + z2

)

(2)

=
λσ

2ε0
k̂
(

z −
√

a2 + z2
)b+L

b
(3)

=
λσ

2ε0

(

L−
√

a2 + (b+ L)2 +
√

a2 + b2
)

k̂ (4)

Problem 2

A uniformly charged (thin) non-conducting shell (hollow sphere) of radius R with the

total positive charge Q is placed at a distance d away from an infinite non-conducting

sheet carrying a uniformly distributed positive charge with a density σ. The distance d is

measured from shell’s center (point O). What is the magnitude of the total electric field

at the center of the shell?

(1) σ
2ε0

(2) Q
4πε0R2 + σ

2ε0
(3) Q

4πε0R2 + σ
ε0

(4) Q
4πε0R2 (5) Q

4πε0R
+ σ

ε0

Solution

This is problem is very easy to solve if one recalls the superposition principle. The total

electric field at any point in space is equal to the sum of the individual contributions from

each source. The electric field produced by the sphere in its interior is always zero1. The

electric field produced by a non-conducting infinitely long sheet is σ
2ε0

everywhere in space.

Therefore, the sum of these two contributions at the center of the sphere is simply σ
2ε0

.

1This can be seen as a consequence of Gauss’ Law for this spherically symmetric situation
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Problem 3

A round wastepaper basket with a 0.15 m radius opening is in a uniform electric field of

300 N/C, perpendicular to the opening. The total flux through the sides and bottom, in

N ·m2/C, is:

(1) - 21 (2) 4.2 (3) 0 (4) 280 (5) can’t tell without knowing the areas of the sides and

bottom

Solution

Because the electric field is a constant everywhere, the electric flux through any closed

surface is zero. Thus, we can write

Φ =

∮

~E · d ~A = 0

Decomposing the entire surface of the basket into the sides, bottom, and top, yields

Φ =

∮

~E · d ~A =

∫

sides

~E · d ~A+

∫

bottom

~E · d ~A+

∫

top

~E · d ~A = 0

thus

∫

sides

~E · d ~A+

∫

bottom

~E · d ~A = −
∫

top

~E · d ~A (5)

= −E Atop (6)

= −E π r2 (7)

= = −300π 0.152 (8)

= −21 (9)

Therefore
∫

sides

~E · d ~A+

∫

bottom

~E · d ~A = −21N/Cm2
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Problem 4

An electric field given by ~E = 10̂i − 5(y2 + 5)ĵ pierces the Gaussian cube of the figure,

where the cube is 2 m on a side. (E is in newtons per coulomb and y is in meters.) What

is the net electric flux through the entire cube?

(1) -80 N/C m2 (2) 80 N/C m2 (3) 0 (4) 20 N/C m2 (5) -20 N/c m2

Solution

We can break up the entire closed surface into the six sides of the cube. The front and

back sides do not contribute since ~E lies on the x, y plane, thus it is parallel to these sides.

Also, the x component Ex = 10 of the electric field is constant. This implies that the

contributions from this component would cancel in each other out among all sides. The

same will happen with the constant part in Ey = −5y2 − 25. Therefore, we end up with

Φ = −5

∫

y=2

y2dxdz + 5

∫

y=0

y2dxdz = −5 · (2)2 ·A = −5 · (2)2 · 22 = −80

Problem 5

A graph of the x component of the electric field as a function of x in a region of space is

shown in the figure. The scale of the vertical axis is set by Exs = 16.0 N/C. The y and

z components of the electric field are zero in this region. If the electric potential at the

origin is 10 V, what is the electric potential (in V) at x = 4.0 m?

(1) 26 (2) -6 (3) 36 (4) 0 (5) 42
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Solution

By definition we have

Vb − Va = −
∫ b

a

~E · ~ds

Where a and b are just two points in which we measure the electric potential V . Since we

are given that V (x = 0) = 10 V, we might as well use that as our point a, and x = 4 as b

to find Vb. Since the y and z components of the electric field are zero everywhere, we have

~E · ~ds = Ex dx, and Ex is given by the plot as a function of x. Therefore, we can write

Vb = Va −
∫ b

a
Ex dx (10)

But the integral above is simply the area under the curve Ex vs. x. We just need to be

careful with the sign of that area since it is negative in the range 0 ≤ x ≤ 3, and positive

in the range x > 4. Thus,

V (x = 4) = V (x = 0)−
∫ 4

0

Ex dx (11)

= 10− (−24 + 8) = 26 (12)

Problem 6

In the figure, a charged particle (either an electron or a proton; you need to find out which

it is) is moving rightward between two parallel charged plates. The plate potentials are V1

= − 25 V and V2 = − 35 V. The particle is slowing down from an initial speed of 3× 106

m/s at the left plate. What is its speed, in m/s, just as it reaches plate 2?

(1) 2.4 ×106 (2) 1.6 ×106 (3) not possible to know without knowing the plates separation

(4) 2.4 ×1012 (5) 3.5 ×1012

Solution

If we use conservation of energy (potential plus kinetic), this problem is really straighfor-

ward. The potential energy of the particle when it starts from plate 1 is U1 = qV1 and
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when it arrives at plate 2 is U2 = qV2. (Recall that the electric potential is a continuous

function in space, therefore a particle very close to the plates will be at an electric potential

equal to the one on the plate2). Therefore, conservation of energy reads

U1 +K1 = U2 +K2 (13)

qV1 +
1

2
mv21 = qV2 +

1

2
mv22 (14)

Solving for v2 gives

v2 =

√

v21 +
2q

m
(V1 − V2) (15)

But now it comes a crucial point. What m do we use? The mass of a proton or that of an

electron? This is very important since their masses differ by a factor of almost 2000! To

clarify this, we recall that ~E = −~∇V . This implies that the electric field, at a certain point

in space, points in the opposite direction of ~∇V at that location. Imagine we draw an x

axis going from plate 1 to plate 2. Since the electric field is constant everywhere between

the plates, i.e. ~E = (Ex, 0, 0) where Ex = constant, the potential V (x) is a monotonic

function of x in going from one plate to the other. Thus, since the potential at plate 1

is V1 = −25 V and decreases to V2 = −35 V at plate 2, ~∇V is negative along the entire

range of x. In other words, ~∇V points to negative direction of x (left). Therefore, from

~E = −~∇V we arrive at the conclusion that ~E points in the positive direction on x (right).

Now, since the particle is slowing down, the total force on it must be in the opposite

direction of motion. Since the particle is traveling to the right, the net force ought to

point to the left. From ~F = q ~E, we see that this is only possible if q is negative since ~E

points to the right. Therefore, the particle is an electron. Using then the electron’s mass

me = 9.1× 10−31 kgs, and charge q = −1.6× 10−19 C, we have

v2 =

√

v21 +
2q

m
(V1 − V2) = 2.4× 106m/s (16)

2Notice that since ~E = −~∇V , the electric potential V must be a continuous function. Otherwise it

would imply an infinite ~E.
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Problem 7

The figure shows a parallel-plate capacitor of plate area A and plate separation 2d. The

left half of the gap is filled with material of dielectric constant κ1 = 12; the top of the

right half is filled with material of dielectric constant κ2 = 20; the bottom of the right half

is filled with material of dielectric constant κ3 = 30. What is the capacitance in terms of

ε0, A, and d?

(1) 9 ε0A
d (2) 62 ε0A

d (3) 18 ε0A
d (4) 31 ε0A

d (5) none of these

Solution

Assuming that the separation between the plates is much smaller than their extension,

we can ignore fringe effects at the edges of the plates and at the junction of the two

materials. Since the plates of a capacitor are made of conducting material, the plates are

equipotential surfaces. This and the first statement allows us to consider this system as

made of capacitor three capacitors C1, C2 and C3 where C2 and C3 are in series, and this

combination is in parallel with C1. Thus

Ceq = C1 +
C2C3

C2 + C3

(17)

With

C1 = κ1
ε0A/2

2d
C2 = κ2

ε0A/2

d
and C3 = κ3

ε0A/2

d
(18)

we have

Ceq =
ε0A

2d

(

κ1
2

+
κ2κ3

κ2 + κ3

)

(19)

= 9
ε0A

d
(20)
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Problem 8

In the figure shown, a potential diference of V = 10 V is applied across the arrangement

of capacitors with capacitances of C1 = C2 = 4µF, and C3 = 6µF. What is the charge q2

on capacitor C2?

(1) 20µC (2) 40µC (3) 60µC (4) 80µC (5) 10µC

Solution

Capacitors C1 and C2 are in series, thus, share the same charge. If V1 and V2 are the

voltages across each of them, we have

V = V1 + V2 (21)

10 = Q/C1 +Q/C2 (22)

Since C1 = C2 ≡ C = 4µF, we get

Q =
CV

2
= 20µC (23)

Problem 9

What is the minimum mechanical work that has to be done on the charge q = 1µC in

order to bring it from point a to point b? In figure, the solid sphere of charge Q = 2µC

with a radius R = 2m is held fixed in space. Point a is located at 12m from the center of

the sphere and point b at 10m as shown.

(1) 3× 10−4 J (2) 1.5× 10−4 J (3) −3× 10−4 J (4) −1.5× 10−4 J (5) 5.51× 10−5 J
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Solution

Since both charges have the same sign, and we are bringing the charge q closer to Q, we

immediately know that we have to make a positive work due to the electric repulsion.

Indeed, the work is

W = q(Vb − Va) = q

(

kQ

rb
− kQ

ra

)

(24)

= 10−6 × 9× 109 × 2× 10−6

(

1

10
− 1

12

)

(25)

= 3× 10−4J (26)

Problem 10

The figure shows a non-conducting (thin) disk with a hole. The radius of the disk is b

and the radius of the hole is a. A total charge Q is uniformly distributed on its surface.

Assuming that the electric potential at infinity is zero, what is the electric potential at

the center of the disk?

(1) 2kQ
b+a (2) 2kQ

b−a (3) 2kQ
b2−a2

(4) 0 (5) kQ
b2

Solution

We saw in class that the potential produced by a charged disk of radius R, at a distance

z from it, along its central axis was

σ

2ε0

(

√

z2 +R2 − z
)

(27)

By supersposition, we can think of the potential created by disk with the hole as the sum

of two disks, with the same but opposite surface densities:

V (z) =
σ

2ε0

(

√

z2 + b2 − z
)

− σ

2ε0

(

√

z2 + a2 − z
)

(28)

=
σ

2ε0

(

√

z2 + b2 −
√

z2 + a2
)

(29)

Since we are only interested at the center, we have

V (0) =
σ

2ε0
(b− a) (30)

The total area of the disk with the hole is A = π(b2 − a2), thus

σ =
Q

π(b2 − a2)

9



Finally

V (0) =
1

2ε0
(b− a)

Q

π(b2 − a2)
(31)

=
2kQ(b− a)

(b− a)(b+ a)
(32)

=
2kQ

b+ a
(33)

Problem 11

A wire segment of length L has constant linear charge density λ > 0. Which of the

following expressions gives the magnitude of the electric field a distance D from the center

of the wire (see figure)?

(1) kλD

∫ L/2

−L/2

dx

(D2 + x2)3/2
(2) kλD

∫ L

0

dx√
D2 + x2

(3) kλD

∫ L

0

dx

D2 + x2

(4) 0 (5) kλD

∫ L/2

−L/2

dx

D + x

Solution

Putting the rod along the x axis with its center at the origin, the problem boils down to

compute ~E at the point (x, y) = (0, D)

The contribution from the segment dx is

|d ~E| = k
dq

D2 + x2
= kλ

dx

D2 + x2
(34)
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Also, we see immediately that the x-component of the total electric field will be zero

due to mutual cancellations among mirror-symmetric segments of the rod. Thus, we only

need the y-component, therefore

dEy = |d ~E| D√
D2 + x2

= kλD
dx

(D2 + x2)3/2
(35)

To get the total electric field, we simply add up all of these contributions, hence

Ey =

∫

dEy = kλD

∫ L/2

−L/2

dx

(D2 + x2)3/2
(36)

Problem 12

A charge Q is placed in the center of a shell of radius R. The flux of electric field through

the shell surface is Φ0. What is the new flux through the shell surface, if its radius is

doubled?

(1) Φ0 (2) 2Φ0 (3) 4Φ0 (4) Φ0/2 (5) Φ0/4

Solution

Gauss’ law states that the electric flux through a closed surface is

Φ ≡
∮

~E · ~ds = Qenc

ε0
(37)

from where we see that the flux only cares about the total charge enclosed by the surface.

By increasing the radius of the sphere we are merely increasing the size of the surface, but

the enclosed charge remains the same. Therefore the new flux is just the old Φ0.
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Problem 13

Two very small spheres have equal masses m, carry charges of the same sign and value q,

and hang on strings of length L as shown in figure. Due to the repulsive force, the spheres

are separated by some distance d. Find this distance. Assume that d � L so that you

can use the approximation tanα ≈ sinα ≈ α

(1) 3

√

2L q2k
mg (2) 3

√

L q2k
mg (3)

√

2L q2k
mg (4)

√

L q2k
mg (5)

√

Lq2k
2mg

Solution

To achieve equilibrium, we see from the figure that we need

T cosα = mg and T sinα = Fe (38)

Now, combining these two equations as

tanα =
Fe

mg
(39)
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and using the Coulomb’s force among the two small spheres Fe = kq2/d2, gives

tanα =
kq2

d2mg
(40)

Finally, for small values for α, tanα ≈ sinα = d/2
L , we have

d/2

L
≈ kq2

d2mg
(41)

from where we obtain

d ≈ 3

√

2L
kq2

mg
(42)

Problem 14

In figure, how much charge is stored on the parallel-plate capacitors by the 10 V battery?

One is filled with air, and the other is filled with a dielectric for which κ = 2.0; both

capacitors have a plate area of 2.00× 10−3m2 and a plate separation of 1.00 mm.

(1) 0.53 nC (2) 0.35 nC (3) 1.06 nC (4) 0.53 µC (5) 0.35 µC

Solution

The charged stored on capacitor C1 is

q1 = C1V = κ
ε0A

d
V = 2

8.85× 10−12 × 2.00× 10−3

10−3
× 10 = 3.5× 10−10

and on capacitor C2 is

q2 = C2V =
ε0A

d
V =

8.85× 10−12 × 2.00× 10−3

10−3
= 1.8× 10−10

Thus, the total is

qtot = 5.3× 10−10 = 0.53nC
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