Chapter 8

Rotational Equilibrium and Rotational dynamics

Torque and Equilibrium

First Condition of Equilibrium

• The net external force must be zero $\vec{\nabla E} = 0.2r$

$$\Sigma \mathbf{F} = 0 \ or$$

$$\Sigma \vec{\mathbf{F}}_x = 0$$
 and $\Sigma \vec{\mathbf{F}}_y = 0$

- This is a statement of translational equilibrium
- •The Second Condition of Equilibrium states

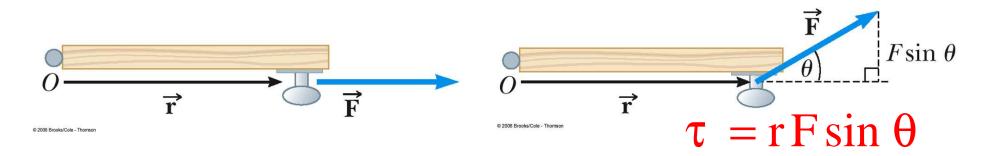
$$\Sigma \vec{\tau} = \mathbf{0}$$

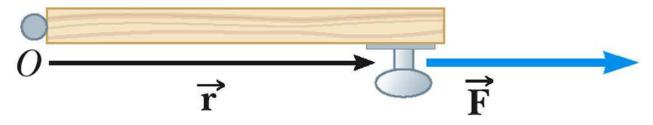
• The net external torque must be zero

A hobbit house

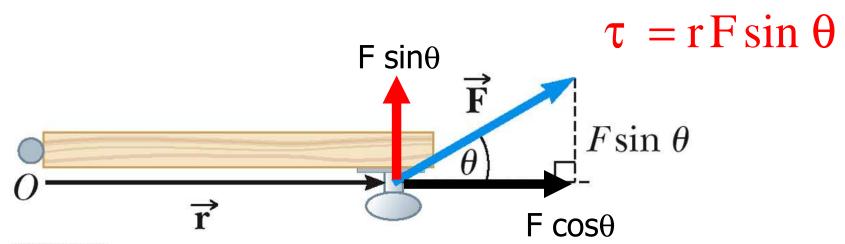
Three Factors affect torque

- •The *magnitude* of the force
- •The *position* of the application of the force
- •The *angle* at which the force is applied





© 2006 Brooks/Cole - Thomson



© 2006 Brooks/Cole - Thomson

Torque and Equilibrium

First Condition of Equilibrium

• The net external force must be zero $\vec{\nabla E} = 0.2r$

$$\Sigma \mathbf{F} = 0 \ or$$

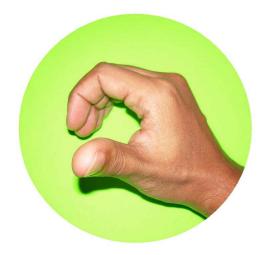
$$\Sigma \vec{\mathbf{F}}_x = 0$$
 and $\Sigma \vec{\mathbf{F}}_y = 0$

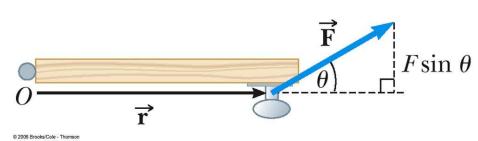
- This is a statement of translational equilibrium
- •The Second Condition of Equilibrium states

$$\Sigma \vec{\tau} = \mathbf{0}$$

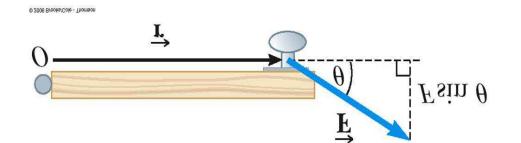
• The net external torque must be zero

Torque direction: Right hand rule again





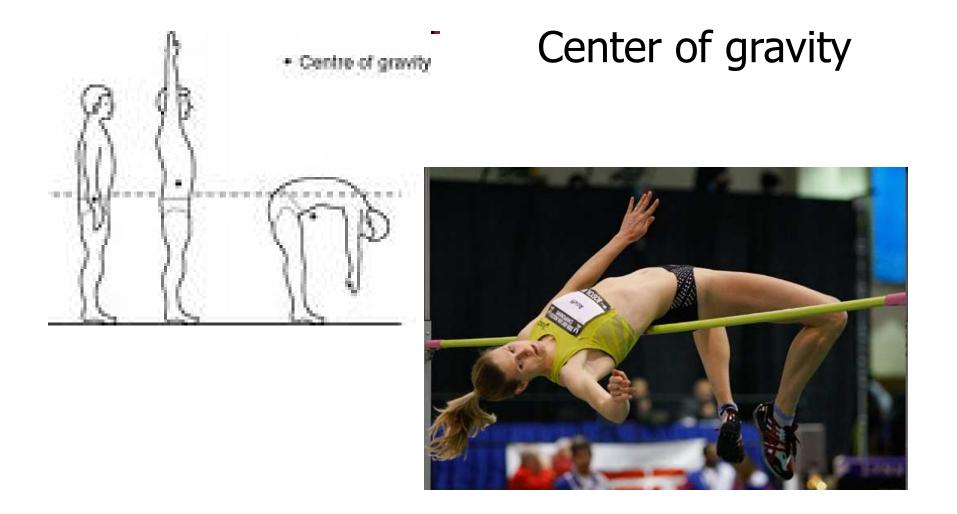
Force turns it in the counterclockwise direction



Force turns it in the clockwise direction

Center of Gravity

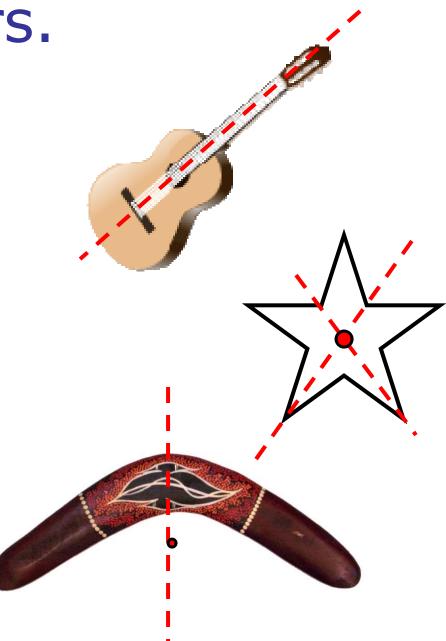
 In finding the torque produced by the force of gravity, all of the weight of the object can be considered to be concentrated at a single point



$$x_{cg} = \frac{\Sigma m_i x_i}{\Sigma m_i}$$
 and $y_{cg} = \frac{\Sigma m_i y_i}{\Sigma m_i}$

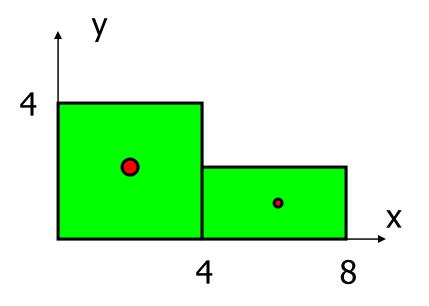
A few pointers. If a body has a

- symmetry and it has a uniform density then the **cg** is on the line of symmetry.
- The center of symmetry coincides with the cg.
- The cg might be outside the object



Example

 Find the cg of a 4x8 uniform sheet of plywood with the upper right quadrant removed.



$$m_1 = 2M; (x_1, y_2) = (2,2)$$

$$m_2 = M; (x_2, y_2) = (6,1)$$

$$x_{cg} = \frac{m_1 x_1 + m_2 x_2}{m_1 + m_2} = \frac{2M \cdot 2 + M \cdot 6}{2M + M} = \frac{10 \cdot M}{6 \cdot M} = \frac{10}{3} ft$$
$$y_{cg} = \frac{m_1 y_1 + m_2 y_2}{m_1 + m_2} = \frac{2M \cdot 2 + M \cdot 1}{2M + M} = \frac{5 \cdot M}{3 \cdot M} = \frac{5}{3} ft$$

Torque and Equilibrium

First Condition of Equilibrium

• The net external force must be zero $\vec{\nabla E} = 0.2r$

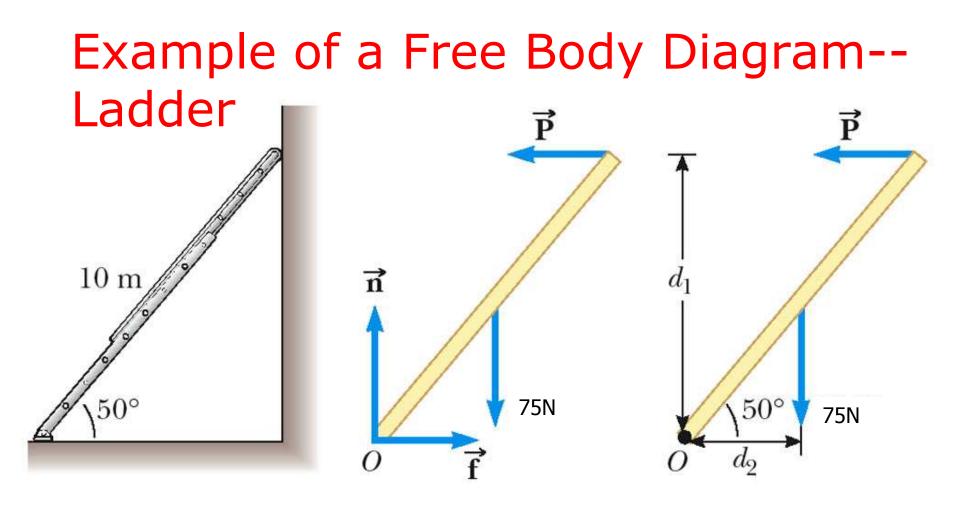
$$\Sigma \mathbf{F} = 0 \ or$$

$$\Sigma \vec{\mathbf{F}}_x = 0$$
 and $\Sigma \vec{\mathbf{F}}_y = 0$

- This is a statement of translational equilibrium
- •The Second Condition of Equilibrium states

$$\Sigma \vec{\tau} = \mathbf{0}$$

• The net external torque must be zero

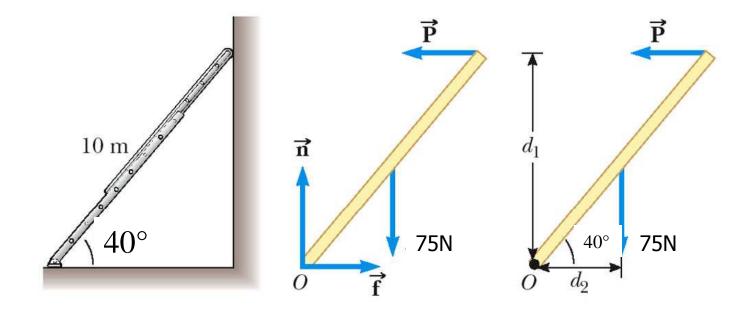


© 2006 Brooks/Cole - Thomson

 free body diagram shows normal force and force of static friction acting on the ladder at the ground

In-class quiz 18-1

Find the force P of the wall on the top of the 10 meter ladder that weights 75 N

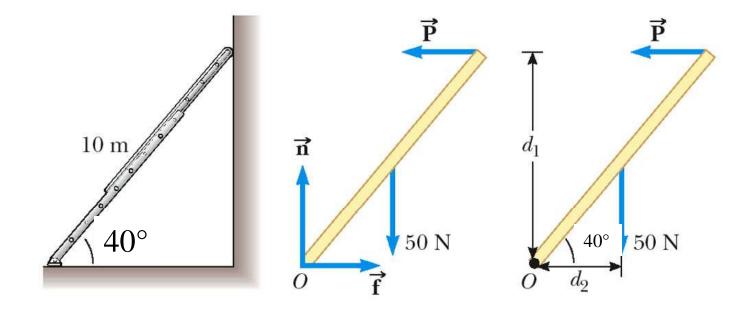


- 50 N Α.
- 25N Β.
- 30 N C.
- D. 21 N 45 N

✓ E.

In-class quiz 18-1

Find the force P of the wall on the top of the 10 meter ladder that weights 50 N



- A. 50 N
 B. 25N
 ✓ С. 30 N
 - D. 21 N
 - e. 45 N

A 100-N uniform ladder, 8.0 m long, rests against a smooth vertical wall. The coefficient of static friction between ladder and floor is 0.40. What minimum angle can the ladder make with the floor before it slips?

- A. 42°
- B. 22°
- C. 18°
- **⊘**. 51°
- E. 39°

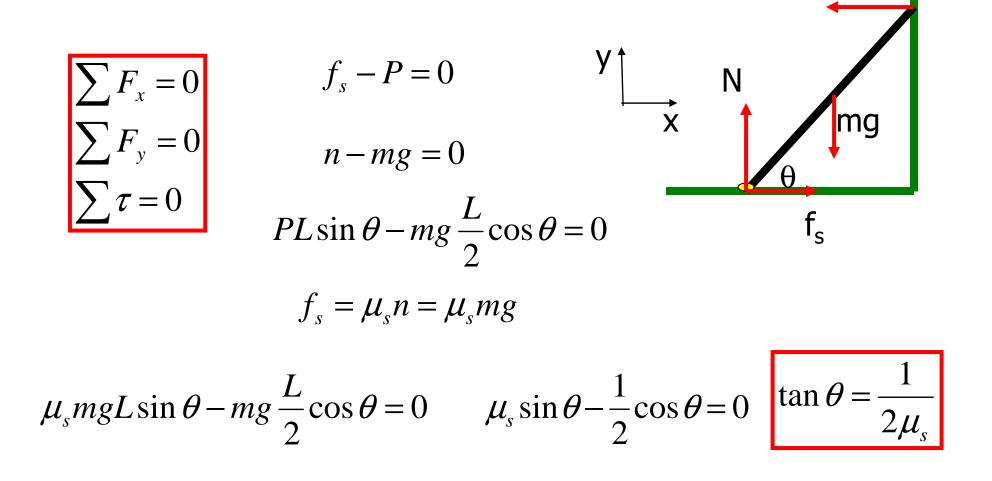
A 100-N uniform ladder, 8.0 m long, rests against a smooth vertical wall. The coefficient of static friction between ladder and floor is 0.62. What minimum angle can the ladder make with the floor before it slips?

- A. 42°
- B. 22°
- C. 18°
- D. 51°

₽. 39°

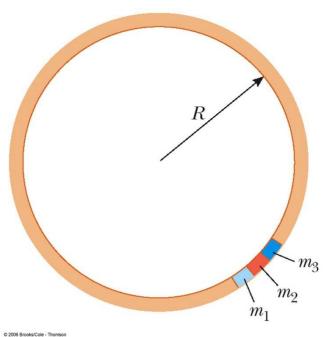
Example: a ladder against a wall

What minimum angle can the ladder make with the floor before it slips?



Torque and Angular Acceleration Newton's Second Law for a Rotating Object $\Sigma \tau = I \alpha$ analogous to $\Sigma F = ma$ I = moment of inertiaFor Uniform Ring $I = \Sigma m_i r_i^2 = MR^2$

moment of inertia depends on quantity of matter *and* its distribution *and* location of axis of rotation



Other Moments of Inertia

