A pitcher throws a $0.15-\mathrm{kg}$ baseball so that it crosses home plate horizontally with a speed of $20 \mathrm{~m} / \mathrm{s}$. The ball is hit straight back at the pitcher with a final speed of $22 \mathrm{~m} / \mathrm{s}$. What is the impulse delivered to the ball?
A. $\quad 0.30 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$ towards pitcher
B. $0.30 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$ toward batter
$6.3 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$ toward pitcher
D. $6.3 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$ toward batter
$1=\Delta P$
$=P_{f}-P_{i}$
$=m\left(v_{\mathrm{F}} \mathrm{V}_{\mathrm{i}}\right)$
$=0.15[(-22)-(+20)] \mathrm{kg} \mathrm{m} / \mathrm{s}$
$=-6.3 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
Negative means toward pitcher

Find the average force exerted by the bat on the ball if the two are in contact for
$2.0 \times 10^{-3} \mathrm{~s} . \quad$ From last page: impulse delivered to the ball $=-6.3 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
$3.1 \times 10^{3} \mathrm{~N}$
towards pitcher
B. $3.1 \times 10^{3} \mathrm{~N} \quad I=F \Delta t$ towards batter $\quad \mathrm{F}=1 / \Delta \mathrm{t}$
c. 6.3 N towards $=-6.3 / 0.002 \mathrm{~N}$ batter
D. 6.3 N towards pitcher
Two objects collide head on. Their masses and
initial velocities are given. If the 10 kg mass has
a final velocity of $-0.1 \mathrm{~m} / \mathrm{s}$, what is the final
velocity of the 1 kg mass?
A. $-10 \mathrm{~m} / \mathrm{s}$
$m_{1} v_{1 i}+m_{2} v_{2 i}=m_{1} v_{1 f}+m_{2} v_{2 f}$
B. $-1 \mathrm{~m} / \mathrm{s}$
$10(1)+1(-1)=10(-1)+1 \mathrm{v}_{2 f}$
c. $0.1 \mathrm{~m} / \mathrm{s}$
*. $10 \mathrm{~m} / \mathrm{s}$

