The earth has a radius of about 6000 km . At what altitude is the acceleration due to gravity about $1 / 4$ that of g (acceleration due to gravity at the surface of the Earth $=9.8 \mathrm{~m} / \mathrm{s}^{2}$) ?

$$
\begin{array}{clc}
& 1000 \mathrm{~km} & \mathrm{~g}=\mathrm{G} \frac{\mathrm{M}_{\mathrm{E}}}{\mathrm{r}^{2}} \\
\text { А. } & 1000 \mathrm{~km} & \mathrm{M}_{\mathrm{E}}=5.9736 \times 10^{24} \mathrm{~kg} \\
\text { в. } & 3000 \mathrm{~km} & \mathrm{G}=6.673 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{kg}^{2}
\end{array}
$$

In class Quiz \#19-2
The earth has a radius of about 6000 km .
At what altitude is the acceleration due to gravity about $1 / 3$ that of g (acceleration due to gravity at the surface of the Earth $=9.8 \mathrm{~m} / \mathrm{s}^{2}$)?
A. $1000 \mathrm{~km} \quad g=G \frac{M_{E}}{r^{2}}$
B. 3000 km
d $4500 \mathrm{~km} \quad \mathrm{M}_{\mathrm{E}}=5.9736 \times 10^{24} \mathrm{~kg}$
D. 8000 km
E. $\quad 10,000 \mathrm{~km} \quad \mathrm{G}=6.673 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{kg}^{2}$

