Phy 2053 Announcements
Good luck on Exam 2!
Exam 2 grades - grades should be available by Monday, April 6 on UF eLearning web site.

- Exam 2 solutions will be posted early next week
HW Assignment 9 next Wednesday, April 8

Elastic Properties of Solids

- Stress - force per unit area causing the deformation
- Strain - measure of the amount of deformation
- The elastic modulus is the constant of proportionality between stress and strain
- Three types of moduli:
- Young's modulus, shear modulus, bulk modulus

Young's Modulus: Elasticity in Length, Stress = F/A Hooke's Law redux

Strain $=\Delta L / L_{0}$

$$
\begin{array}{r}
\frac{F}{A}=Y \frac{\Delta L}{L_{0}} \Rightarrow F=\left(\frac{A Y}{L_{0}}\right) \Delta L \\
\downarrow \\
k
\end{array}
$$

Example \#9-11

Determine the elongation of the rod shown below if it is under a tension of $5.8 \times 10^{3} \mathrm{~N}$.

$Y_{A I}=7 \times 10^{10} \mathrm{~Pa}$
$Y_{A l}=11 \times 10^{10} \mathrm{~Pa}$

Shear Modulus

- shear stress $=\frac{F}{A}$
shear strain $=\frac{\Delta X}{h}$
$\frac{F}{A}=S \frac{\Delta x}{h}$
- S is the shear modulus
- A material having a large shear modulus is difficult to bend

Bulk Modulus

$$
\Delta \mathrm{P}=-\mathrm{B} \frac{\Delta \mathrm{~V}}{\mathrm{~V}}
$$

- A material with a large bulk modulus is difficult to compress
- The negative sign is included
 since an increase in pressure will produce a decrease in volume
- B is always positive
- The compressibility is the reciprocal of the bulk modulus

Notes on Moduli

- Solids have Young's, Bulk, and Shear moduli
- Liquids and gases have only bulk moduli, they will not undergo a shearing or tensile stress
- The liquid or gas would flow instead

Pressure

- The force exerted by a fluid on a submerged object at any point if perpendicular to the surface of the object

$$
\mathrm{P} \equiv \frac{\mathrm{~F}}{\mathrm{~A}} \text { in } \mathrm{Pa}=\frac{\mathrm{N}}{\mathrm{~m}^{2}}
$$

Density

- The density of a substance of uniform composition is defined as its mass per unit volume:

$$
\rho \equiv \frac{\mathrm{m}}{\mathrm{~V}}
$$

- Units are $\mathrm{kg} / \mathrm{m}^{3}(\mathrm{SI})$ or $\mathrm{g} / \mathrm{cm}^{3}$ (cgs)
- $1 \mathrm{~g} / \mathrm{cm}^{3}=1000 \mathrm{~kg} / \mathrm{m}^{3}$

Pressure and Depth equation

- $P=P_{o}+\rho g h$
- P_{0} is normal atmospheric pressure
$1.013 \times 10^{5} \mathrm{~Pa}$
The pressure does not depend upon the shape of the
 container

Liquid in a U- tube

