PHY 2053 announcements: January 8, 2009
-Textbook: College Physics I by Serway/Vuille soft cover with white background

- Optional course packet (blue book): available at Target copy on Friday
-Webassign: free for 11 more days please logon and enter the code from textbook email me if you have problems with login $1^{\text {st }}$ assignment not for credit
-Clickers: will start practice today please get one!

Units

- To convey certain physical property of an object.
- Units of length: meter, foot, inches, lightyears...
- SI -Systéme International (MKS=Meters-Kilograms-Second)
- CGS - Gaussian system (Centimeters-Grams-Second)
- US Customary (foot-slug-second)

- you will need a few more defined units in PHY 2054
- Units can be treated as algebraic quantities
- add, subtract, multiply, divide

Time remaining $=50 \mathrm{~min}-20 \mathrm{~min}=30 \mathrm{~min}$
Area $=$ width \times height $=4 \mathrm{~cm} \times 5 \mathrm{~cm}=20 \mathrm{~cm}^{2}$

- e.g., SI unit of area: meter ${ }^{2}\left(\mathrm{~m}^{2}\right)$

SI Unit of speed: meter/second (ms ${ }^{-1}$)

Significant Figures

- Length [L]
- Mass [M]
- Time [t]
- Temperature [T]

Dimensional Analysis

- Technique to check the correctness of an equation. Both sides of equation must have the same dimensions
- 1 hour = 3600 s
dimension t on both sides
- Area $=$ width \times height
$4 \mathrm{~cm} \times 5 \mathrm{~cm}=20 \mathrm{~cm}^{2}$
dimension L^{2} on both sides

Rounding Off

When adding or subtracting, round the result to the smallest number of decimal places of any term in the sum

- If the last digit to be dropped is less than 5 , drop the digit
- If the last digit dropped is greater than or equal to 5 , raise the last retained digit by 1

$$
\begin{aligned}
& 15.54+0.141=15.681=15.68 \\
& 15.54+0.146=15.686=15.69
\end{aligned}
$$

When multiplying or dividing two or more quantities, the number of significant figures in the final result is the same as the number of significant figures in the least accurate of the factors being combined

$$
56.7 \times 10.002=567.1134=567
$$

Unit Conversions

Units can be treated like algebraic quantities that can "cancel" each other

- See the inside of the text front cover for an extensive list of conversion factors
Convert inches to Centimeters:

$$
15.0 \text { in } X\left(\frac{2.54 \mathrm{~cm}}{1.00 \mathrm{in}}\right)=38.1 \mathrm{~cm}
$$

Problem Solving Summary

- Equations are the tools of physics
- Understand what the equations mean and how to use them
- Carry through the algebra as far as possible - Substitute numbers at the end
- Be organized

Chapter 2: Dynamics

- The branch of physics involving the motion of an object and the relationship between that motion and other physics concepts
- Kinematics is a part of dynamics
- In kinematics, you are interested in the description of motion
- Not concerned with the cause of the motion

Position

- Choose coordinate axes
- In one dimension, generally the x - or y-axis

Displacement

- Defined as the change in position
- $\Delta x \equiv x_{f}-x_{i}$
- f stands for final and i stands for initial
- May be represented as $\Delta \mathrm{y}$ if vertical
- Units are meters (m) in SI

Quantities in Motion

- Any motion involves three concepts
- Displacement
- Velocity
- Acceleration

Vector vs. scalar

- Vector quantities need both magnitude (size) and direction to completely describe them
- Generally denoted by boldfaced type and an arrow over the letter (\mathbf{x} or \vec{X})
- + or - sign is sufficient for this chapter (for motion in 1 dimension)
- Scalar quantities are completely described by magnitude only
- Displacement is a vector.
- Distance is a scalar.

Distance is not the same as displacement.

- Example: Throw a ball straight up and then catch it at the same point you released it
- The distance is twice the height
- The displacement is zero

Average Velocity

$$
\bar{v}_{\text {averrge }}=\frac{\Delta \bar{x}}{\Delta t}
$$

Constant Velocity

- The straight line indicates constant velocity
- The slope of the line is the value of the average velocity

Non-Constant Velocity

- The motion is nonconstant velocity
- The average velocity is the slope of the blue line joining two points

Instantaneous Velocity: keep making Δt smaller:

The slope of the line tangent to the position-vs.time graph is defined to be the instantaneous velocity at that time

Speed vs. velocity	
scalar	vector
Average speed	Average velocity
Total distance	Total displacement
Total time	Total time
d	$\Delta \vec{x}$
t	
	$\vec{x}_{f}-\vec{x}_{i}$
Units: meter/second (m/s)	

Acceleration

- Changing velocity means an acceleration is present
- Acceleration is the rate of change of the velocity

$$
\overline{\mathrm{a}}=\frac{\Delta \mathrm{v}}{\Delta \mathrm{t}}=\frac{\mathrm{v}_{\mathrm{f}}-\mathrm{v}_{\mathrm{i}}}{\mathrm{t}_{\mathrm{f}}-\mathrm{t}_{\mathrm{i}}}
$$

- Units are $\mathrm{m} / \mathrm{s}^{2}$ (SI), cm/s s^{2} (cgs), and $\mathrm{ft} / \mathrm{s}^{2}$ (US Cust)
- Vector quantity

