Exam 1: Thursday, 2/20, 8:20-10:10pm

- Room Assignments:		- Breakdown of the 20 Problems	
Last Name	Room	Material	\# of Problems
A-G	NRN 137	Chapter 1	0 0, but?
H-O	TURL007	Chapter 2	4
P-z	CLBC130	Chapter 3	4
		Chapter 4	4
		Chapter 5	4
		Chapter 6	4
- Crib Sheet: You may bring a single hand written formula sheet on $81 / 2 \times 11$ inch paper (both sides).			
- Calculator: You should bring a calculator (any type, no wifi).			
- Scratch Paper: We will provide scratch paper.			
University of Florida		PHY 2053	Page 1

Exam 1 Spring 2012: Problem 12
A beanbag is thrown horizontally from a dorm room window a height h above the ground. It hits the ground a horizontal distance $\mathrm{d}=\mathrm{h} / \mathbf{2}$ from the dorm directly below the window from which it was thrown. Ignoring air resistance, find the direction of the beanbag's velocity just before impact. Answer: $\mathbf{7 6 . 0 ^ { \circ }}$ below the horizontal \% Right: 22\% $t_{h}^{2}=\frac{2 h}{g}$ $\begin{aligned} & v_{x}(t)=v_{0} \\ & x(t)=v_{0} t \end{aligned}$ $y(t)=h-\frac{1}{2} g t^{2}$ Let t_{n} be the time the beanbag hits the grynd. $\begin{aligned} & y\left(t_{h}\right)=0=h-\frac{1}{2} g t_{h}^{2} \\ & x\left(t_{h}\right)=d=v_{0} t_{h} \tan \theta=\frac{\left\|v_{y}\left(t_{h}\right)\right\|}{\left\|v_{x}\left(t_{h}\right)\right\|}=\frac{g t_{h}}{v_{0}}=\frac{g t_{h}^{2}}{d}=\frac{2 h}{d}=4 \\ & \theta \approx 76^{\circ} \end{aligned}$

Final Exam Fall 2011: Problem 7

- Near the surface of the Earth a suspension bridge is a height \mathbf{H} above the level base of a gorge. Two identical stones are simultaneously thrown from the bridge. One stone is thrown straight down with speed v_{0} and the other is thrown straight up a the same speed v_{0}. Ignore air resistance. If one of the stones lands at the bottom of the gorge 2 seconds before the other, what is the speed v_{0} (in m / s)?
Answer: 9.8 $\quad y_{u p}(t)=H+v_{o} t-\frac{1}{2} g t^{2} \quad y_{\text {down }}(t)=H-v_{o} t-\frac{1}{2} g t^{2}$
\% Right: $36 \% \quad y_{u p}\left(t_{u p}\right)=0=H+v_{o} t_{u p}-\frac{1}{2} g t_{u p}^{2} \quad y_{\text {down }}\left(t_{\text {down }}\right)=0=H-v_{o} t_{\text {down }}-\frac{1}{2} g t_{\text {down }}^{2}$

Exam 1 Spring 2012: Problem 37

Consider a mass $\mathrm{M}=6 \mathrm{~kg}$ suspended by a very light string from the ceiling of a railway car near the surface of the Earth. The car has a constant acceleration as shown in the figure, causing the mass to hang at an angle θ with the vertical. If the acceleration of the railway car is $\mathbf{a}=6 \mathbf{~ m} / \mathbf{s}^{2}$, what is the tension in the string (in N)?

Answer: 68.9

\% Right: 63\%

$$
\begin{gathered}
M g-F_{T} \cos \theta=0 \\
F_{T} \sin \theta=M a_{x} \\
F_{T}^{2}=M^{2}\left(g^{2}+a_{x}^{2}\right)
\end{gathered}
$$

$$
F_{T}=M \sqrt{g^{2}+a_{x}^{2}}=(6 \mathrm{~kg}) \sqrt{\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)^{2}+\left(6 \mathrm{~m} / \mathrm{s}^{2}\right)^{2}} \approx 68.9 \mathrm{~N}
$$

University of Florida
PHY 2053
Page 9

Exam 2 Spring 2011: Problem 2

- A race car accelerates uniformly from a speed of $40 \mathrm{~m} / \mathrm{s}$ to a speed of $58 \mathrm{~m} / \mathrm{s}$ in 6 seconds while traveling around a circular track of radius 625 m . When the car reaches a speed of $50 \mathrm{~m} / \mathrm{s}$ what is the magnitude of its total acceleration (in $\mathrm{m} / \mathrm{s}^{2}$)?
Answer: 5
\% Right: 49\%

$$
\begin{gathered}
a_{t}=\frac{v_{2}-v_{1}}{t_{2}-t_{1}}=\frac{(58 \mathrm{~m} / \mathrm{s})-(40 \mathrm{~m} / \mathrm{s})}{6 \mathrm{~s}}=3 \mathrm{~m} / \mathrm{s} \\
a_{r}=\frac{v^{2}}{R}=\frac{(50 \mathrm{~m} / \mathrm{s})^{2}}{625 \mathrm{~m}}=4 \mathrm{~m} / \mathrm{s} \\
a_{\text {tot }}=\sqrt{a_{t}^{2}+a_{r}^{2}}=5 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

Exam 1 Spring 2012: Problem 20

Exam 1 Fall 2010: Problem 11

- Near the surface of the Earth, a block of mass M = $\mathbf{2} \mathbf{~ k g}$ slides along the floor while an external force Fext is applied at an upward angle $\theta=26^{\circ}$. If the coefficient of kinetic friction between the block and the floor is 0.488 , and the magnitude of the acceleration of the block is 1.89 $\mathrm{m} / \mathbf{s}^{2}$, what is the magnitude of the external force?
Answer: 12 N
\% Right: 59\%
$F_{e x} \cos \theta-f_{k}=M a_{x}$

$$
F_{e x t} \sin \theta+F_{N}-M g=0
$$

$$
f_{k}=\mu_{k} F_{N}
$$

$$
\begin{aligned}
& F_{e x t}=\frac{M\left(a_{x}+\mu_{k} g\right)}{\cos \theta+\mu_{k} \sin \theta} \\
& =\frac{(2 \mathrm{~kg})\left(1.89 \mathrm{~m} / \mathrm{s}^{2}+(0.488) 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}{\cos \left(26^{\circ}\right)+(0.488) \sin \left(26^{\circ}\right)} \approx 12.0 \mathrm{~N}
\end{aligned}
$$

University of Florida
PHY 2053
Page 10

Exam 2 Spring 2011: Problem 4

- Near the surface of the Earth, a car is traveling at a constant speed v around a flat circular race track with a radius of 50 m . If the coefficients of kinetic and static friction between the car's tires and the road are $\mu_{\mathrm{k}}=0.1$, $\mu_{\mathrm{s}}=0.4$, respectively, what is the maximum speed the car can travel without slipping?

$$
\begin{aligned}
& \text { can travel without slipping? } \\
& \begin{array}{c}
\text { Answer: } 14 \mathrm{~m} / \mathrm{s} \quad f_{s}=M a_{x}=M a_{\text {radial }}=M \frac{v^{2}}{R} \\
\text { \% Right: } 74 \% \\
F_{N}-M g=M a_{y}=0 \\
f s \leq \mu_{s} F_{N}
\end{array} \\
& \qquad v_{\max }^{2}=\frac{R}{M}\left(f_{s}\right)_{\max }=\frac{R}{M}\left(\mu_{s} F_{N}\right)=\frac{R}{M}\left(\mu_{s} M g\right)=\mu_{s} g R \\
& v_{\max }=\sqrt{\mu_{s} g R}=\sqrt{(0.4)\left(9.8 m / s^{2}\right)(50 \mathrm{~m})}=14 \mathrm{~m} / \mathrm{s} \\
& \text { University of Florida }
\end{aligned}
$$

Page 12

Exam 1 Fall 2010: Problem 17

- Near the surface of the Earth a block of mass M and initial velocity $16.97 \mathrm{~m} / \mathrm{s}$ is sliding to the right along the (negative) x-axis as shown. The surface is frictionless for $x<0$. At $x=0$ the block encounters a 45° incline ramp. If the block stops at a height $h=9.8 \mathrm{~m}$, what is the kinetic coefficient of friction of the ramp? $d=h / \sin \theta \quad$ Answer: 0.5 $E_{f}=E_{i}+W \quad M g h=\frac{1}{2} M v^{2}-f_{k} d \quad d=h / \sin \theta \quad$ \% Right: 41% $E_{i}=\frac{1}{2} M v^{2} \quad F_{N}-M g \cos \theta=0 \boldsymbol{\psi}^{\prime}=\tan \theta\left(\frac{v^{2}}{2 g h}-1\right)$
$E_{f}=M g h$
$W=-f_{k} d$
$f_{k}=\mu_{k} F_{N}$
$f_{k}=\mu_{k} M g \cos \theta$
University of Florida
PHY 2053

