Exam 2
Solutions

1. The free-body diagram for the block is

Using Newton's second law for the x-components

$$
\begin{aligned}
\sum F_{x} & =m a_{x} \\
F_{1}+F_{2} \cos 37^{\circ}-f_{k} & =0 \\
f_{k} & =F_{1}+F_{2} \cos 37^{\circ}=(10 \mathrm{~N})+(15 \mathrm{~N}) \cos 37^{\circ}=22 \mathrm{~N}
\end{aligned}
$$

The work done by kinetic friction

$$
W=f_{k} \Delta r \cos \theta=(22 \mathrm{~N})(6 \mathrm{~m}) \cos 180^{\circ}=-130 \mathrm{~N}
$$

2. Mechanical energy is conserved

$$
\begin{aligned}
U_{1}+K_{1} & =U_{2}+K_{2} \\
m g y_{1}+\frac{1}{2} m v_{1}^{2} & =m g y_{2}+\frac{1}{2} m v_{2}^{2} \\
g y_{1}+\frac{1}{2} v_{1}^{2} & =g y_{2}+\frac{1}{2} v_{2}^{2} \\
v_{2} & =\sqrt{v_{1}^{2}+2 g\left(y_{1}-y_{2}\right)}=\sqrt{(3 \mathrm{~m} / \mathrm{s})^{2}+2\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(60 \mathrm{~m}-30 \mathrm{~m})}=24 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

3. Mechanical energy is not conserved since the sled stops moving.

$$
\begin{aligned}
W_{n c} & =\Delta K+\Delta U \\
& =\left(K_{f}-K_{i}\right)+\left(U_{f}-U_{i}\right) \\
& =(0-0)+\left(0-m g y_{i}\right) \\
& =-m g y_{i}=-(45 \mathrm{~kg}+15 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(15 \mathrm{~m})=-8800 \mathrm{~J}
\end{aligned}
$$

Friction does the dissipative work

$$
\begin{aligned}
W_{n c} & =f_{k} \Delta r \cos \theta \\
f_{k} & =\frac{W_{n c}}{\Delta r \cos 180^{\circ}}=\frac{-8800 \mathrm{~J}}{(44 \mathrm{~m})(-1)}=200 \mathrm{~N}
\end{aligned}
$$

4. The force information gives the force constant for the spring

$$
\begin{aligned}
& F=k x \\
& k=\frac{F}{x}=\frac{80 \mathrm{~N}}{0.20 \mathrm{~m}}=400 \mathrm{~N} / \mathrm{m}
\end{aligned}
$$

Mechanical energy is conserved as the ball exits the gun

$$
\begin{aligned}
U_{1}+K_{1} & =U_{2}+K_{2} \\
\frac{1}{2} k x_{1}^{2}+\frac{1}{2} m v_{1}^{2} & =\frac{1}{2} k x_{2}^{2}+\frac{1}{2} m v_{2}^{2} \\
\frac{1}{2} k x_{1}^{2}+0 & =0+\frac{1}{2} m v_{2}{ }^{2} \\
v_{2} & =x_{1} \sqrt{\frac{k}{m}}=(0.20 \mathrm{~m}) \sqrt{\frac{400 \mathrm{~N} / \mathrm{m}}{0.018 \mathrm{~kg}}}=30 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

5. The work done by the engine increases the car's kinetic energy.

$$
\begin{aligned}
W & =\Delta K \\
& =K_{f}-K_{i} \\
& =\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2} \\
& =\frac{1}{2}(1000 \mathrm{~kg})(40 \mathrm{~m} / \mathrm{s})^{2}-\frac{1}{2}(1000 \mathrm{~kg})(10 \mathrm{~m} / \mathrm{s})^{2}=7.5 \times 10^{5} \mathrm{~J}
\end{aligned}
$$

The power output by the engine rate of the work done by the engine

$$
P=\frac{W}{t}=\frac{7.5 \times 10^{5} \mathrm{~J}}{10 \mathrm{~s}}=7.5 \times 10^{4} \mathrm{~W}
$$

6. The force is found from the impulse-momentum theorem. Before the collision

After the collision

The impulse-momentum theorem is

$$
\Delta \overrightarrow{\mathbf{p}}=\overrightarrow{\mathbf{F}}_{a v} \Delta t
$$

Since this is a vector equation, we must take components. Since the motion is only along the x-axis, only the x-component is needed.

$$
\Delta p_{x}=F_{a v, x} \Delta t
$$

The change in momentum is

$$
\Delta p_{x}=m v_{f x}-m v_{i x}=(1.5 \mathrm{~kg})(2 \mathrm{~m} / \mathrm{s})-(1.5 \mathrm{~kg})(-6 \mathrm{~m} / \mathrm{s})=12 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}
$$

The average force is

$$
F_{a v, x}=\frac{\Delta p_{x}}{\Delta t}=\frac{12 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}}{0.20 \mathrm{~s}}=60 \mathrm{~N}
$$

7. Linear momentum is conserved since the explosion is an internal force. Before the explosion

$$
p_{i}=m v_{i}=(15 \mathrm{~kg})(40 \mathrm{~m} / \mathrm{s})=600 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}
$$

After the explosion

Since linear momentum is conserved,

$$
\begin{aligned}
p_{i} & =p_{f} \\
p_{i} & =m_{1} v_{1 f}+m_{2} v_{2 f} \\
v_{1 f} & =\frac{p_{i}-m_{2} v_{2 f}}{m_{1}}=\frac{(600 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s})-(5 \mathrm{~kg})(60 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s})}{10 \mathrm{~kg}}=30 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

8. Use the equations for a one dimensional elastic collision derived in lecture

$$
\begin{aligned}
& \stackrel{5 \mathrm{~m} / \mathrm{s}}{ } \xrightarrow{2 \mathrm{~kg}} \xrightarrow{2 \mathrm{~m} / \mathrm{s}} \\
& v_{2 f}=\left(\frac{2 m_{1}}{m_{1}+m_{2}}\right) v_{1 i}+\left(\frac{m_{2}-m_{1}}{m_{1}+m_{2}}\right) v_{2 i} \\
&=\left(\frac{2(2 \mathrm{~kg})}{2 \mathrm{~kg}+3 \mathrm{~kg}}\right)(5 \mathrm{~m} / \mathrm{s})+\left(\frac{3 \mathrm{~kg}-2 \mathrm{~kg}}{2 \mathrm{~kg}+3 \mathrm{~kg}}\right)(2 \mathrm{~m} / \mathrm{s})=4.4 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

9. Momentum is conserved in the collision. Before the collision

For the x-component

$$
p_{i x}=m_{1} v_{1}=(1200 \mathrm{~kg})(15 \mathrm{~m} / \mathrm{s})=1.8 \times 10^{4} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}
$$

For the y-component

$$
p_{i y}=m_{2} v_{2}=(1500 \mathrm{~kg})(10 \mathrm{~m} / \mathrm{s})=1.5 \times 10^{4} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}
$$

After the collision

For the x-component

$$
p_{f x}=m v \cos \theta
$$

And the y-component

$$
p_{f y}=m v \sin \theta
$$

Using the conservation of linear momentum

$$
\begin{aligned}
p_{i x} & =p_{f x} \\
1.8 \times 10^{4} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s} & =m v \cos \theta
\end{aligned}
$$

And

$$
\begin{aligned}
p_{i y} & =p_{f y} \\
1.5 \times 10^{4} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s} & =m v \sin \theta
\end{aligned}
$$

There are two equations

$$
\begin{aligned}
& 1.8 \times 10^{4} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}=m v \cos \theta \\
& 1.5 \times 10^{4} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}=m v \sin \theta
\end{aligned}
$$

To solve for v directly, square the equations and add them together.

$$
\begin{aligned}
(m v \cos \theta)^{2}+(m v \sin \theta)^{2} & =\left(1.8 \times 10^{4} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}\right)^{2}+\left(1.5 \times 10^{4} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}\right)^{2} \\
(m v)^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right) & =5.49 \times 10^{8} \mathrm{~kg}^{2} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2} \\
v & =\sqrt{\frac{5.49 \times 10^{8} \mathrm{~kg}^{2} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2}}{m^{2}}}=\sqrt{\frac{5.49 \times 10^{8} \mathrm{~kg}^{2} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2}}{(2700 \mathrm{~kg})^{2}}}=8.7 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

10. The object looks like

The definition of the center of mass is

$$
x_{c m}=\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}}
$$

The 1 subscript refers to the rod and the 2 subscript refers to the additional mass. Solving for m_{2} :

$$
\begin{aligned}
x_{c m} & =\frac{m_{1}+m_{2}}{m_{1}+m_{2}} \\
x_{c m}\left(m_{1}+m_{2}\right) & =m_{1} x_{1}+m_{2} x_{2} \\
m_{1} x_{c m}+m_{2} x_{c m} & =m_{1} x_{1}+m_{2} x_{2} \\
m_{2}\left(x_{c m}-x_{2}\right) & =m_{1}\left(x_{1}-x_{c m}\right) \\
m_{2} & =m_{1} \frac{\left(x_{1}-x_{c m}\right)}{\left(x_{c m}-x_{2}\right)}
\end{aligned}
$$

Measuring the locations from the left end of the rod, the location of the rod is $x_{1}=1 \mathrm{~m}$, the location of the added mass is $x_{2}=0$, and the location of the center of mass is $x_{c m}=$ 0.75 m . So

$$
m_{2}=m_{1} \frac{\left(x_{1}-x_{c m}\right)}{\left(x_{c m}-x_{2}\right)}=(3 \mathrm{~kg}) \frac{(1 \mathrm{~m}-0.75 \mathrm{~m})}{(0.75 \mathrm{~m}-0)}=1.0 \mathrm{~kg}
$$

11. The object consists of two parts. The rotational inertia can be decomposed into

$$
I=I_{\text {disk }}+I_{\text {mass }}
$$

The rotational inertia of the disk is

$$
I_{\text {disk }}=\frac{1}{2} m_{\text {disk }} R^{2}=\frac{1}{2}(3 \mathrm{~kg})(0.6 \mathrm{~m})^{2}=0.54 \mathrm{~kg} \cdot \mathrm{~m}^{2}
$$

The rotational inertia of the extra mass is

$$
I_{\text {disk }}=m r^{2}=(1 \mathrm{~kg})(0.6 \mathrm{~m})^{2}=0.36 \mathrm{~kg} \cdot \mathrm{~m}^{2}
$$

Finally,

$$
I=I_{\text {disk }}+I_{\text {mass }}=0.54 \mathrm{~kg} \cdot \mathrm{~m}^{2}+0.36 \mathrm{~kg} \cdot \mathrm{~m}^{2}=0.90 \mathrm{~kg} \cdot \mathrm{~m}^{2}
$$

12.

The forces on the beam are

The condition for equilibrium is

$$
\sum \tau=0
$$

Taking torques about the left end (the hinge)

$$
\begin{aligned}
\sum \tau & =0 \\
\tau_{W}+\tau_{T} & =0
\end{aligned}
$$

The torque due to the weight is clockwise. Its value is

$$
\tau_{W}=-W r_{\perp W}=-(960 \mathrm{~N})(4 \mathrm{~m})=3840 \mathrm{~N} \cdot \mathrm{~m}
$$

To find the torque due to the tension, we need the angle θ

$$
\theta=\tan ^{-1}\left(\frac{3 \mathrm{~m}}{4 \mathrm{~m}}\right)=37^{\circ}
$$

The torque is counterclockwise,

$$
\tau_{T}=+T r_{\perp T}=T\left((4 \mathrm{~m}) \sin 37^{\circ}\right)=(2.4 \mathrm{~m}) T
$$

The tension can be found

$$
\begin{aligned}
\tau_{W}+\tau_{T} & =0 \\
-3840 \mathrm{~N} \cdot \mathrm{~m}+(2.4 \mathrm{~m}) T & =0 \\
T & =\frac{3840 \mathrm{~N} \cdot \mathrm{~m}}{2.4 \mathrm{~m}}=1600 \mathrm{~N}
\end{aligned}
$$

13. The rotational inertia of the hoop is

$$
I=M R^{2}=(100 \mathrm{~kg})(2 \mathrm{~m})^{2}=400 \mathrm{~kg} \cdot \mathrm{~m}^{2}
$$

Its angular acceleration

$$
\alpha=\frac{\Delta \omega}{\Delta t}=\frac{(0-20 \mathrm{rad} / \mathrm{s})}{200 \mathrm{~s}}=-0.10 \mathrm{rad} / \mathrm{s}^{2}
$$

We don't care about the direction of the acceleration. Drop the minus sign. The torque is

$$
\begin{aligned}
\sum \tau & =I \alpha \\
\tau & =I \alpha=\left(400 \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)\left(0.10 \mathrm{rad} / \mathrm{s}^{2}\right)=40 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

14. The fastest object reaches the bottom first. Use energy to find the fastest. Take position 1 at the top of the ramp and position 2 at the bottom of the ramp.

$$
\begin{aligned}
K_{1}+U_{1} & =K_{2}+U_{2} \\
0+m g y & =\left(\frac{1}{2} m v^{2}+\frac{1}{2} I \omega^{2}\right)+0
\end{aligned}
$$

The rotational inertia for the shapes can be summarized (like our text does) by

$$
I=\beta m R^{2}
$$

For the sphere $\beta=2 / 5$, the cylinder $\beta=1 / 2$, and the ring $\beta=1$. Also use $\omega=v / R$ in the energy relation:

$$
\begin{aligned}
& m g y=\frac{1}{2} m v^{2}+\frac{1}{2} \beta m R^{2}\left(\frac{v}{R}\right)^{2} \\
& g y=\frac{1}{2} v^{2}(1+\beta) \\
& v=\sqrt{\frac{2 g y}{(1+\beta)}}
\end{aligned}
$$

The largest β will be the slowest. The order will be sphere, cylinder, and ring.
15. Angular momentum will be conserved.

$$
\begin{aligned}
L_{i} & =L_{f} \\
I_{i} \omega_{i} & =I_{f} \omega_{f}
\end{aligned}
$$

The time for one rotation (T) is related to the angular speed (ω)

$$
\begin{aligned}
\omega T & =2 \pi \\
\omega & =\frac{2 \pi}{T}
\end{aligned}
$$

Substituting

$$
\begin{aligned}
I_{i} \omega_{i} & =I_{f} \omega_{f} \\
I_{i} \frac{2 \pi}{T_{i}} & =I_{f} \frac{2 \pi}{T_{f}} \\
T_{f} & =T_{i} \frac{I_{f}}{I_{i}}=(1.8 \mathrm{~s})\left(\frac{\frac{1}{2} I_{i}}{I_{i}}\right)=0.90 \mathrm{~s}
\end{aligned}
$$

16. No.
17. At the depth of 2 m

$$
P_{2}=P_{1}+\rho g d=\left(1.01 \times 10^{5} \mathrm{~Pa}\right)+\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(2 \mathrm{~m})=1.21 \times 10^{5} \mathrm{~Pa}
$$

Double that number and find the depth

$$
\begin{aligned}
P_{2} & =P_{1}+\rho g d \\
d & =\frac{P_{2}-P_{1}}{\rho g}=\frac{2\left(1.21 \times 10^{5} \mathrm{~Pa}\right)-1.01 \times 10^{5} \mathrm{~Pa}}{\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}=14 \mathrm{~m}
\end{aligned}
$$

18. From the density and the mass the volume is found

$$
\begin{aligned}
\rho & =\frac{m}{V} \\
V & =\frac{m}{\rho}=\frac{15 \mathrm{~kg}}{3000 \mathrm{~kg} / \mathrm{m}^{3}}=5.0 \times 10^{-3} \mathrm{~m}^{3}
\end{aligned}
$$

Use Archimedes' principle to find the buoyant force

$$
F_{B}=\rho_{f} g V=\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)\left(5.0 \times 10^{-3} \mathrm{~m}^{3}\right)=49 \mathrm{~N}
$$

19. Call the position at the bottom of the pipe 1 and the position at the top of the pipe 2 . Applying Bernoulli's equation

$$
P_{1}+\rho g y_{1}+\frac{1}{2} \rho v_{1}^{2}=P_{2}+\rho g y_{2}+\frac{1}{2} \rho v_{2}^{2}
$$

The pipe's diameter does not change so

$$
A_{1}=A_{2}
$$

By the continuity equation

$$
\begin{aligned}
A_{1} v_{1} & =A_{2} v_{2} \\
v_{1} & =v_{2}
\end{aligned}
$$

Since the end of the pipe is exposed to the atmosphere $P_{2}=P_{\text {atm }}$. Heights are measured from the lowest point so $y_{1}=0$. Making these substitutions

$$
\begin{aligned}
P_{1}+\rho g y_{1}+\frac{1}{2} \rho v_{1}^{2} & =P_{2}+\rho g y_{2}+\frac{1}{2} \rho v_{2}^{2} \\
P_{1}+0+\frac{1}{2} \rho v_{1}^{2} & =P_{a t m}+\rho g y_{2}+\frac{1}{2} \rho v_{1}^{2} \\
P_{1} & =P_{a t m}+\rho g y_{2}=1.01 \times 10^{5} \mathrm{~Pa}+\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(6 \mathrm{~m})=1.60 \times 10^{5} \mathrm{~Pa}
\end{aligned}
$$

20. Poiseuille's law is

$$
\begin{aligned}
\frac{\Delta V}{\Delta t} & =\frac{\pi}{8} \frac{\Delta P / L}{\eta} r^{4} \\
\Delta P / L & =\left(\frac{\Delta V}{\Delta t}\right) \frac{8 \eta}{\pi r^{4}}=\left(2.30 \times 10^{-2} \mathrm{~m}^{3} / \mathrm{s}\right)\left(\frac{(8)\left(1.0 \times 10^{-3} \mathrm{~Pa} \cdot \mathrm{~s}\right.}{\pi(0.025 \mathrm{~m})^{4}}\right)=150 \mathrm{~Pa} / \mathrm{m}
\end{aligned}
$$

