PHY2053 Summer 2012
 Exam 3
 Solutions

1. The cross-sectional area of the cable is

$$
A=\pi r^{2}=\pi\left(1.2 \times 10^{-2} \mathrm{~m}\right)^{2}=4.52 \times 10^{-4} \mathrm{~m}^{2}
$$

The force exerted by the mass is due to its weight

$$
F=W=m g=(250 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)=2450 \mathrm{~N}
$$

Young's modulus is

$$
\begin{aligned}
\frac{F}{A} & =Y \frac{\Delta L}{L} \\
\frac{\Delta L}{L} & =\frac{F}{A Y}=\frac{2450 \mathrm{~N}}{\left(4.52 \times 10^{-4} \mathrm{~m}^{2}\right)\left(2.0 \times 10^{11} \mathrm{~Pa}\right)}=2.7 \times 10^{-5}
\end{aligned}
$$

2. The definition of bulk modulus

$$
\begin{aligned}
& \Delta P=-B \frac{\Delta V}{V} \\
& \Delta V=\frac{-P V}{B}=\frac{-\left(300 \times 1.01 \times 10^{5} \mathrm{~Pa}\right)\left(2.00 \mathrm{~m}^{3}\right)}{50 \times 10^{9} \mathrm{~Pa}}=-1.2 \times 10^{-3} \mathrm{~m}^{3}
\end{aligned}
$$

3. The angular frequency can be found from the period

$$
\omega=\frac{2 \pi}{T}=\frac{2 \pi}{0.3 \mathrm{~s}}=20.9 \mathrm{rad} / \mathrm{s}
$$

The angular frequency depends on the spring constant and mass

$$
\begin{aligned}
\omega & =\sqrt{\frac{k}{m}} \\
k & =\omega^{2} m=(20.9 \mathrm{rad} / \mathrm{s})^{2}(3 \mathrm{~kg})=1300 \mathrm{~N} / \mathrm{m}
\end{aligned}
$$

4. The period of a simple pendulum is given by

$$
T=2 \pi \sqrt{\frac{L}{g}}
$$

Since mass does not appear in the equation, the change of mass does not affect the period. Forming a ratio

$$
\frac{T_{2}}{T_{1}}=\frac{2 \pi \sqrt{\frac{L_{2}}{g}}}{2 \pi \sqrt{\frac{L_{1}}{g}}}=\sqrt{\frac{L_{2}}{L_{1}}}
$$

Solve for T_{2},

$$
T_{2}=T_{1} \sqrt{\frac{L_{2}}{L_{1}}}=(3.6 \mathrm{~s}) \sqrt{\frac{2 L}{L}}=5.1 \mathrm{~s}
$$

5. Conservation of energy

$$
\begin{aligned}
K_{1}+U_{1} & =K_{2}+U_{2} \\
\frac{1}{2} m v_{1}^{2}+\frac{1}{2} k x_{1}^{2} & =\frac{1}{2} m v_{2}^{2}+\frac{1}{2} k x_{2}^{2} \\
m v_{1}^{2}+k x_{1}^{2} & =m v_{2}^{2}+k x_{2}^{2}
\end{aligned}
$$

When the mass is at its maximum amplitude, its velocity is zero.

$$
\begin{aligned}
m v_{1}^{2}+k x_{1}^{2} & =m v_{2}^{2}+k x_{2}^{2} \\
m v_{1}^{2}+k x_{1}^{2} & =m(0)^{2}+k A^{2} \\
A & =\sqrt{\left(\frac{m}{k}\right) v_{1}^{2}+x_{1}^{2}}=\sqrt{\left(\frac{0.75 \mathrm{~kg}}{30 \mathrm{~N} / \mathrm{m}}\right)(0.80 \mathrm{~m} / \mathrm{s})^{2}+(0.15 \mathrm{~m})^{2}}=0.20 \mathrm{~m}
\end{aligned}
$$

6. The angular frequency can be found from the period

$$
\omega=\frac{2 \pi}{T}=\frac{2 \pi}{1.5 \mathrm{~s}}=4.19 \mathrm{rad} / \mathrm{s}
$$

The equation for the velocity is

$$
x=-A \omega \sin \omega t=-(0.50 \mathrm{~m})(4.19 \mathrm{rad} / \mathrm{s}) \sin [(4.19 \mathrm{rad} / \mathrm{s})(5 \mathrm{~s})]=-1.8 \mathrm{~m} / \mathrm{s}
$$

7. The intensity is defined as

$$
I=\frac{P}{4 \pi r^{2}}
$$

Forming a ratio

$$
\frac{I_{2}}{I_{1}}=\frac{\frac{P}{4 \pi r_{2}^{2}}}{\frac{P}{4 \pi r_{1}^{2}}}=\left(\frac{r_{1}}{r_{2}}\right)^{2}
$$

Solving for I_{2},

$$
I_{2}=\left(\frac{r_{1}}{r_{2}}\right)^{2} I_{1}=\left(\frac{3 \mathrm{~m}}{4 \mathrm{~m}}\right)^{2}\left(10 \mathrm{~W} / \mathrm{m}^{2}\right)=5.6 \mathrm{~W} / \mathrm{m}^{2}
$$

8. The speed of a wave in a string is given by

$$
v=\sqrt{\frac{F}{\mu}}
$$

The tension (F) in the string is due to the suspended mass,

$$
F=M g=(50 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)=490 \mathrm{~N}
$$

and μ is the mass per unit length of the string

$$
\mu=\frac{m}{L}=\frac{0.100 \mathrm{~kg}}{8 \mathrm{~m}}=0.0125 \mathrm{~kg} / \mathrm{m}
$$

The speed of the wave is

$$
v=\sqrt{\frac{F}{\mu}}=\sqrt{\frac{490 \mathrm{~N}}{0.0125 \mathrm{~kg} / \mathrm{m}}}=198 \mathrm{~m} / \mathrm{s}
$$

The time needed for the wave depends on the distance and the speed of the wave,

$$
\Delta t=\frac{\Delta x}{v}=\frac{8 \mathrm{~m}}{198 \mathrm{~m} / \mathrm{s}}=0.040 \mathrm{~s}
$$

9. In a transverse wave, the individual particles of the medium move perpendicularly to the direction of the wave's travel.
10. The speed of the wave is related to its frequency and wavelength,

$$
\begin{aligned}
& v=f \lambda \\
& \lambda=\frac{v}{f}=\frac{340 \mathrm{~m} / \mathrm{s}}{440 \mathrm{~Hz}}=0.77 \mathrm{~m}
\end{aligned}
$$

None of the choices are correct.
11. The general equation for a wave traveling along the $+x$-direction is

$$
y(x, t)=A \cos (\omega t-k x)
$$

The angular frequency can be found from the linear frequency

$$
\omega=2 \pi f=2 \pi(25 \mathrm{~Hz})=157 \mathrm{rad} / \mathrm{s}
$$

The wavenumber can be found from the speed of the wave and ω,

$$
\begin{aligned}
& v=\frac{\omega}{k} \\
& k=\frac{\omega}{v}=\frac{157 \mathrm{rad} / \mathrm{s}}{50 \mathrm{~m} / \mathrm{s}}=3.14 \mathrm{rad} / \mathrm{m}
\end{aligned}
$$

Substituting into the general equation

$$
y(x, t)=A \cos ((157 \mathrm{rad} / \mathrm{s}) t-(3.14 \mathrm{rad} / \mathrm{m}) x)
$$

12. When the pulse on the right reflects back from the wall, it will be inverted because the rope is a fixed point. The upright and inverted pulses cancel when they overlap. The combined amplitude is zero.
13. The general equation for a standing wave is

$$
y=2 A \sin \omega t \cos k x
$$

The wavelength is twice the distance between two nodes,

$$
\lambda=2 \times(0.30 \mathrm{~m})=0.60 \mathrm{~m}
$$

which can be used to find the wavenumber

$$
k=\frac{2 \pi}{\lambda}=\frac{2 \pi}{0.60 \mathrm{~m}}=10.5 \mathrm{rad} / \mathrm{m}
$$

The angular frequency is related to the linear frequency

$$
\omega=2 \pi f=2 \pi(60 \mathrm{~Hz})=377 \mathrm{rad} / \mathrm{s}
$$

Substituting into the general equation

$$
y=2 A \sin ((377 \mathrm{rad} / \mathrm{s}) t) \cos ((10.5 \mathrm{rad} / \mathrm{m}) x)
$$

14. A wave can spread around an obstacle when the wavelength is similar to the size of the obstacle. This is called diffraction.
15. The speed of the wave in the rope is related to the tension in the rope and its linear density,

$$
v=\sqrt{\frac{F}{\mu}}
$$

The linear density is

$$
\mu=\frac{m}{L}=\frac{0.160 \mathrm{~kg}}{4 \mathrm{~m}}=0.040 \mathrm{~kg} / \mathrm{m}
$$

The speed of the wave is

$$
v=\sqrt{\frac{F}{\mu}}=\sqrt{\frac{400 \mathrm{~N}}{0.040 \mathrm{~kg} / \mathrm{m}}}=100 \mathrm{~m} / \mathrm{s}
$$

The equation for the frequencies in a rope is

$$
f_{n}=\frac{n v}{2 L}
$$

For the second harmonic, $n=2$

$$
f_{n}=\frac{n v}{2 L}=\frac{2(100 \mathrm{~m} / \mathrm{s})}{2(4 \mathrm{~m})}=25 \mathrm{~Hz}
$$

16. The decibel scale is defined as

$$
\beta=(10 \mathrm{~dB}) \log \frac{I}{I_{0}}
$$

Taking the difference of two dB readings

$$
\begin{aligned}
\beta_{2}-\beta_{1} & =(10 \mathrm{~dB}) \log \frac{I_{2}}{I_{0}}-(10 \mathrm{~dB}) \log \frac{I_{2}}{I_{0}} \\
& =(10 \mathrm{~dB})\left(\log \frac{I_{2}}{I_{0}}-\log \frac{I_{1}}{I_{0}}\right) \\
& =(10 \mathrm{~dB})\left(\log \frac{I_{2} / I_{0}}{I_{1} / I_{0}}\right) \\
& =(10 \mathrm{~dB})\left(\log \frac{I_{2}}{I_{1}}\right)
\end{aligned}
$$

Solving for I_{2} / I_{1},

$$
\begin{aligned}
\beta_{2}-\beta_{1} & =(10 \mathrm{~dB})\left(\log \frac{I_{2}}{I_{1}}\right) \\
\frac{I_{2}}{I_{1}} & =10^{\left(\beta_{2}-\beta_{1}\right) / 10}=10^{(99-74) / 10}=40
\end{aligned}
$$

17. The possible wavelengths in an open pipe are related to the length of the pipe

$$
\lambda_{n}=\frac{2 L}{n}
$$

For the fundamental frequency, $\lambda=2 L=2(0.077 \mathrm{~m})=0.154 \mathrm{~m}$. The speed of the wave is related to its frequency and wavelength

$$
\begin{aligned}
& v=f \lambda \\
& f=\frac{v}{\lambda}=\frac{340 \mathrm{~m} / \mathrm{s}}{0.154 \mathrm{~m}}=2200 \mathrm{~Hz}
\end{aligned}
$$

18. For a pipe with one end open, the wavelength of the fundamental frequency is related to the length of the pipe, $\lambda=4 L$. The corresponding frequency is

$$
f=\frac{v}{\lambda}=\frac{v}{4 L}
$$

Forming a ratio

$$
\frac{f_{2}}{f_{1}}=\frac{v / 4 L_{2}}{v / 4 L_{1}}=\frac{L_{1}}{L_{2}}=\frac{L_{1}}{2 L_{1} / 3}=\frac{3}{2}
$$

We have $f_{2}=3 f_{1} / 2$.
19. The lighter tuning fork has frequency f_{2}. Since it has lighter mass, it vibrates quicker and it will have the higher frequency.

$$
\begin{aligned}
f_{\text {beat }} & =f_{2}-f_{1} \\
f_{2} & =f_{1}+f_{\text {beat }}=440 \mathrm{~Hz}+6 \mathrm{~Hz}=446 \mathrm{~Hz}
\end{aligned}
$$

20. Since the source moves in the same direction as the sound, $v_{S}>0$.The Doppler shift for a moving source is

$$
f_{o}=\left(\frac{1}{1-v_{S} / v}\right) f_{S}=\left(\frac{1}{1-(31 \mathrm{~m} / \mathrm{s}) /(340 \mathrm{~m} / \mathrm{s})}\right)(1000 \mathrm{~Hz})=1100 \mathrm{~Hz}
$$

