Uniformly Accelerated Motion Super Problem

A ball is thrown upward at $25 \mathrm{~m} / \mathrm{s}$ from the ground.

1. What is the initial velocity of the ball?
2. What is the acceleration of the ball?
3. What is the ball's velocity after 2 seconds?
4. What is the ball's velocity after 4 seconds?
5. What is the maximum height of the ball?
6. How long until the ball hits the ground?
7. When is the magnitude of the velocity $5 \mathrm{~m} / \mathrm{s}$?
8. What distance has the ball travelled after 5 seconds?
9. What is the average velocity and average speed of the ball after 5 seconds?
10. Another ball is thrown one second later. What speed does it need to hit the ground simultaneously with the first ball?

Solution:

1. $v_{i y}=+25 \mathrm{~m} / \mathrm{s}$
2. $a_{y}=-9.8 \mathrm{~m} / \mathrm{s}^{2}$
3. The final velocity is

$$
\begin{aligned}
v_{f y}-v_{i y} & =a_{y} \Delta t \\
v_{f y} & =v_{i y}+a_{y} \Delta t=25 \mathrm{~m} / \mathrm{s}+\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(2 \mathrm{~s})=5.4 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

4. The final velocity is

$$
\begin{aligned}
v_{f y}-v_{i y} & =a_{y} \Delta t \\
v_{f y} & =v_{i y}+a_{y} \Delta t=25 \mathrm{~m} / \mathrm{s}+\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(4 \mathrm{~s})=-14.2 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

5. At the highest point, what is the velocity?

$$
\begin{aligned}
v_{f y}^{2}-v_{i y}{ }^{2} & =2 a_{y} \Delta y \\
0-v_{i y}{ }^{2} & =2 a_{y} \Delta y \\
\Delta y & =\frac{-v_{i y}{ }^{2}}{2 a_{y}}=\frac{-(25 \mathrm{~m} / \mathrm{s})^{2}}{2\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}=31.9 \mathrm{~m}
\end{aligned}
$$

6. What is the ball's displacement when it returns to the ground?

$$
\Delta y=v_{i y} \Delta t+\frac{1}{2} a_{y}(\Delta t)^{2}
$$

$$
\begin{aligned}
0 & =v_{i y} \Delta t+\frac{1}{2} a_{y}(\Delta t)^{2} \\
& =\Delta t\left(v_{i y}+\frac{1}{2} a_{y} \Delta t\right) \\
\Delta t & =\frac{-2 v_{i y}}{a_{y}}=\frac{-2(25 \mathrm{~m} / \mathrm{s})}{-9.8 \mathrm{~m} / \mathrm{s}^{2}}=5.10 \mathrm{~s}
\end{aligned}
$$

How long does it take for the ball to reach its maximum height?
7. The velocity has magnitude $5 \mathrm{~m} / \mathrm{s}$ when its value is $+5 \mathrm{~m} / \mathrm{s}$ and $-5 \mathrm{~m} / \mathrm{s}$. For $+5 \mathrm{~m} / \mathrm{s}$,

$$
\begin{aligned}
v_{f y}-v_{i y} & =a_{y} \Delta t \\
\Delta t & =\frac{v_{f y}-v_{i y}}{a_{y}}=\frac{5 \mathrm{~m} / \mathrm{s}-25 \mathrm{~m} / \mathrm{s}}{-9.8 \mathrm{~m} / \mathrm{s}^{2}}=2.04 \mathrm{~s}
\end{aligned}
$$

For $-5 \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
v_{f y}-v_{i y} & =a_{y} \Delta t \\
\Delta t & =\frac{v_{f y}-v_{i y}}{a_{y}}=\frac{-5 \mathrm{~m} / \mathrm{s}-25 \mathrm{~m} / \mathrm{s}}{-9.8 \mathrm{~m} / \mathrm{s}^{2}}=3.06 \mathrm{~s}
\end{aligned}
$$

Notice these times are equidistant from the time it take to reach the highest point, 2.55 s . The velocities are symmetric about the highest point.
8. The ball is descending at 5 s . The position at 5 seconds is

$$
\Delta y=v_{i y} \Delta t+\frac{1}{2} a_{y}(\Delta t)^{2}=(25 \mathrm{~m} / \mathrm{s})(5 \mathrm{~s})+\frac{1}{2}\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(5 \mathrm{~s})^{2}=2.5 \mathrm{~m}
$$

The ball rises to a maximum height of 31.9 m and falls to a height of 2.5 m , a distance of $(31.9 \mathrm{~m}-2.5 \mathrm{~m})=29.4 \mathrm{~m}$ below the highest point. The total distance travelled is

$$
d=31.9 \mathrm{~m}+29.4 \mathrm{~m}=61.3 \mathrm{~m}
$$

9. The average velocity is the displacement divided by the elapsed time

$$
v_{a v, y}=\frac{\Delta y}{\Delta t}=\frac{2.5 \mathrm{~m}}{5 \mathrm{~s}}=0.5 \mathrm{~m} / \mathrm{s}
$$

The average speed is the distance divided by the time

$$
\text { speed }=\frac{d}{\Delta t}=\frac{61.3 \mathrm{~m}}{5 \mathrm{~s}}=12.3 \mathrm{~m} / \mathrm{s}
$$

10. The second ball must be in the air 1 second shorter than the first ball.

$$
\Delta t_{2}=\Delta t_{1}-1 \mathrm{~s}=5.10 \mathrm{~s}-1.00 \mathrm{~s}=4.10 \mathrm{~s}
$$

Again, when it hits the ground, $\Delta y=0$

$$
\begin{aligned}
\Delta y & =v_{i y} \Delta t+\frac{1}{2} a_{y}(\Delta t)^{2} \\
0 & =v_{i y} \Delta t+\frac{1}{2} a_{y}(\Delta t)^{2} \\
& =\Delta t\left(v_{i y}+\frac{1}{2} a_{y} \Delta t\right) \\
v_{i y} & =-\frac{1}{2} a_{y} \Delta t=-\frac{1}{2}\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(4.10 \mathrm{~s})=20.1 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

NOW, CAN YOU DO THIS PROBLEM WITH A DIFFERENT STARTING POINT? For example, what if you were given the maximum height. What is the initial speed? What if you knew its velocity at 2 seconds. What is the speed at 4 seconds?

