
PHY2053 Summer 2012 
Exam 2 

Solutions 
 
 
1. The free-body diagram for the block is 

 
 

 Using Newton’s second law for the x-components 
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 The work done by kinetic friction 
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2. Mechanical energy is conserved 
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3. Mechanical energy is not conserved since the sled stops moving. 
 

J8800)m15)(m/s8.9)(kg15kg45(

)0()00(

)()(

2 −=+−=−=

−+−=

−+−=
∆+∆=

i

i

ifif

nc

mgy

mgy

UUKK

UKW

 

 

37o 

fk 

mg 

N 

F1 

F2 



 Friction does the dissipative work 
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4. The force information gives the force constant for the spring 
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 Mechanical energy is conserved as the ball exits the gun 
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5. The work done by the engine increases the car’s kinetic energy. 
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 The power output by the engine rate of the work done by the engine 
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6. The force is found from the impulse-momentum theorem.  Before the collision 
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 After the collision 
 

       
 

 The impulse-momentum theorem is 
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 Since this is a vector equation, we must take components.  Since the motion is only along 

the x-axis, only the x-component is needed. 
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 The change in momentum is 
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 The average force is  
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7. Linear momentum is conserved since the explosion is an internal force.  Before the 

explosion 
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 After the explosion 
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 Since linear momentum is conserved, 
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8. Use the equations for a one dimensional elastic collision derived in lecture 
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9. Momentum is conserved in the collision.  Before the collision 
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 For the x-component 
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 For the y-component 

 
m/skg105.1)m/s10)(kg1500( 4

22 ⋅×=== vmpiy  

 
 After the collision 
 

 
For the x-component 
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And the y-component 
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Using the conservation of linear momentum 
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 There are two equations  
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 To solve for v directly, square the equations and add them together. 
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10. The object looks like 
 

 
 The definition of the center of mass is 
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 The 1 subscript refers to the rod and the 2 subscript refers to the additional mass.  Solving 

for m2: 
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 Measuring the locations from the left end of the rod, the location of the rod is x1 = 1 m, 

the location of the added mass is x2 = 0, and the location of the center of mass is xcm = 
0.75 m.  So 
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11. The object consists of two parts.  The rotational inertia can be decomposed into 
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 The rotational inertia of the disk is  
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 The rotational inertia of the extra mass is 
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 Finally, 
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12.  

 
 
 The forces on the beam are 

 

 
 
 The condition for equilibrium is 
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 Taking torques about the left end (the hinge) 
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 The torque due to the weight is clockwise.  Its value is 
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 To find the torque due to the tension, we need the angle θ 
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The torque is counterclockwise, 
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 The tension can be found 
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13. The rotational inertia of the hoop is 
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 Its angular acceleration 
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 We don’t care about the direction of the acceleration.  Drop the minus sign.  The torque is 
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14. The fastest object reaches the bottom first.  Use energy to find the fastest.  Take position 

1 at the top of the ramp and position 2 at the bottom of the ramp. 
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 The rotational inertia for the shapes can be summarized (like our text does) by 
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 For the sphere β = 2/5, the cylinder β = 1/2, and the ring β = 1.  Also use ω = v/R in the 

energy relation: 
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 The largest β will be the slowest.  The order will be sphere, cylinder, and ring. 
 
15. Angular momentum will be conserved. 
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 The time for one rotation (T) is related to the angular speed (ω) 
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 Substituting 
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16. No. 
 
17. At the depth of 2 m 
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 Double that number and find the depth 
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18. From the density and the mass the volume is found 
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 Use Archimedes’ principle to find the buoyant force 
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19. Call the position at the bottom of the pipe 1 and the position at the top of the pipe 2.  

Applying Bernoulli’s equation 
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 The pipe’s diameter does not change so 
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By the continuity equation 
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 Since the end of the pipe is exposed to the atmosphere P2 = Patm.  Heights are measured 

from the lowest point so y1 =0.  Making these substitutions 
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20. Poiseuille’s law is 
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