PHY2053
Summer 2013
Exam 3 Solutions

1. By Pascal's principle, the pressure needed to lift the mass is distributed throughout the hydraulic fluid. The pressure is

$$
P_{\text {out }}=\frac{F_{\text {out }}}{A_{\text {out }}}=\frac{m g}{\pi\left(r_{\text {out }}\right)^{2}} \frac{(1250 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}{\pi\left[(6 \mathrm{in})\left(2.54 \times 10^{-2} \mathrm{~m} / \mathrm{in}\right)\right]^{2}}=1.68 \times 10^{5} \mathrm{~Pa}
$$

By Pascal's principle, $P_{\text {out }}=P_{i n}$.

$$
\begin{aligned}
& P_{i n}=\frac{F_{\text {in }}}{A_{\text {in }}} \\
& F_{\text {in }}=P_{\text {in }} A_{\text {in }}=\left(1.68 \times 10^{5} \mathrm{~Pa}\right)\left(\pi\left[(1 \mathrm{in})\left(2.54 \times 10^{-2} \mathrm{~m} / \mathrm{in}\right)\right]^{2}=340 \mathrm{~N}\right.
\end{aligned}
$$

2. The pressure at the bottom of the tube is due to the weight of the water, the weight of the oil, and the atmosphere.

$$
\begin{aligned}
P_{2} & =P_{1}+\rho_{o} g h_{o}+\rho_{W} g h_{W} \\
& =1.01 \times 10^{5} \mathrm{~Pa}+\left(800 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(15 \mathrm{~m})+\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(12.5 \mathrm{~m}) \\
& =3.4 \times 10^{5} \mathrm{~Pa}
\end{aligned}
$$

3. There two ways to solve the problem. One is to use the density of steel to find the volume of the bolt. First find the mass of the bolt

$$
\begin{aligned}
W & =m g \\
m & =\frac{W}{g}=\frac{0.770 \mathrm{~N}}{9.8 \mathrm{~m} / \mathrm{s}^{2}}=0.0786 \mathrm{~kg}
\end{aligned}
$$

Use the density to find the volume,

$$
\begin{aligned}
\rho & =\frac{m}{V} \\
V & =\frac{m}{\rho}=\frac{0.0786 \mathrm{~kg}}{7860 \mathrm{~kg} / \mathrm{m}^{3}}=1.0 \times 10^{-5} \mathrm{~m}^{3}
\end{aligned}
$$

The other way to solve this problem is to use Archimedes' principle. The buoyant force is the difference in the actual weight and the apparent weight,

$$
F_{B}=W-W_{a p p}=0.770 \mathrm{~N}-0.672 \mathrm{~N}=0.098 \mathrm{~N}
$$

Now use Archimedes' principle

$$
\begin{aligned}
F_{B} & =\rho g V \\
V & =\frac{F}{\rho g}=\frac{0.098 \mathrm{~N}}{\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}=1.0 \times 10^{-5} \mathrm{~m}^{3}
\end{aligned}
$$

4. The volume flow rate is related to the speed of the water,

$$
\begin{aligned}
\frac{\Delta V}{\Delta t} & =A v \\
v & =\frac{1}{A} \frac{\Delta V}{\Delta t}=\frac{1}{\pi r^{2}} \frac{\Delta V}{\Delta t}=\frac{1}{\pi((0.0254 \mathrm{~m}) / 2)^{2}} \frac{0.080 \mathrm{~m}^{3}}{12 \mathrm{~s}}=13.2 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

This velocity is created as the water flows from down from the tower. Using Bernoulli's equation

$$
P_{1}+\rho g y_{1}+\frac{1}{2} \rho v_{1}^{2}=P_{2}+\rho g y_{2}+\frac{1}{2} \rho v_{2}^{2}
$$

Associate the 1 subscript with the tower and the 2 subscript with the faucet. Since the tower and the faucet are open to the atmosphere, $P_{1}=P_{2}=P_{\text {atm. }}$. The tower has such a large volume and its level falls very slowly, $v_{1}=0$.

$$
\begin{aligned}
P_{a t m}+\rho g y_{1}+\frac{1}{2} \rho(0)^{2} & =P_{a t m}+\rho g y_{2}+\frac{1}{2} \rho v_{2}^{2} \\
\rho g\left(y_{1}-y_{2}\right) & =\frac{1}{2} \rho v_{2}^{2} \\
y_{1}-y_{2} & =\frac{v_{2}^{2}}{2 g}=\frac{(13.2 \mathrm{~m} / \mathrm{s})^{2}}{2\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}=8.8 \mathrm{~m}
\end{aligned}
$$

5. Use Poiseuille's law

$$
\begin{aligned}
& \frac{\Delta V}{\Delta t}=\frac{\pi}{8} \frac{\Delta P / L}{\eta} r^{4} \\
& \Delta P=\frac{\Delta V}{\Delta t} \frac{8}{\pi} \frac{L \eta}{r^{4}}=\left(4.5 \times 10^{-4} \mathrm{~m}^{3} / \mathrm{s}\right) \frac{8}{\pi} \frac{(1900 \mathrm{~m})(0.20 \mathrm{~Pa} \cdot \mathrm{~s})}{(0.15 \mathrm{~cm})^{4}}=860 \mathrm{~Pa}
\end{aligned}
$$

6. The stress in the cable is

$$
\text { stress }=\frac{F}{A}=\frac{m g}{\pi r^{2}}=\frac{(250 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}{\pi(0.012 \mathrm{~m})^{2}}=5.42 \times 10^{6} \mathrm{~Pa}
$$

Young's modulus is

$$
\begin{aligned}
Y & =\frac{\text { stress }}{\text { strain }} \\
\text { strain } & =\frac{\text { stress }}{Y}=\frac{5.42 \times 10^{6} \mathrm{~Pa}}{2.0 \times 10^{11} \mathrm{~Pa}}=2.7 \times 10^{-5}
\end{aligned}
$$

Since strain $=\Delta L / L$ this is the fractional increase in length.
7. The volume compresses $0.10 \%=0.001$. The relationship defining the bulk modulus,

$$
\Delta P=-B \frac{\Delta V}{V}=\left(90 \times 10^{9} \mathrm{~Pa}\right)(0.001)=9.0 \times 10^{7} \mathrm{~Pa}
$$

8. The spring constant is

$$
k=\frac{m g}{x}=\frac{(3 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}{0.25 \mathrm{~m}}=118 \mathrm{~N} / \mathrm{m}
$$

The period of a simple harmonic oscillator is

$$
T=2 \pi \sqrt{\frac{m}{k}}=2 \pi \sqrt{\frac{(3 \mathrm{~kg})}{(118 \mathrm{~N} / \mathrm{m})}}=1.0 \mathrm{~s}
$$

9. The period of a pendulum is

$$
T=2 \pi \sqrt{\frac{L}{g}}
$$

Forming a ratio

$$
\begin{aligned}
& \frac{T_{M}}{T_{E}}=\frac{2 \pi \sqrt{\frac{L}{g_{M}}}}{2 \pi \sqrt{\frac{L}{g_{E}}}}=\sqrt{\frac{g_{E}}{g_{M}}} \\
& T_{M}=T_{E} \sqrt{\frac{g_{E}}{g_{M}}}=(2.0 \mathrm{~s}) \sqrt{\frac{9.8 \mathrm{~m} / \mathrm{s}^{2}}{3.8 \mathrm{~m} / \mathrm{s}^{2}}}=3.2 \mathrm{~s}
\end{aligned}
$$

10. Use the conservation of energy

$$
\begin{aligned}
U_{1}+K_{1} & =U_{2}+K_{2} \\
\frac{1}{2} k A^{2}+0 & =\frac{1}{2} k x_{2}^{2}+K_{2}
\end{aligned}
$$

The amplitude is $A=0.25 \mathrm{~cm}$. Solving for K_{2},

$$
K_{2}=\frac{1}{2} k A^{2}-\frac{1}{2} k x_{2}^{2}=\frac{1}{2} k\left(A^{2}-x_{2}^{2}\right)=\frac{1}{2}(50 \mathrm{~N} / \mathrm{m})\left((0.25 \mathrm{~m})^{2}-(0.10 \mathrm{~m})^{2}\right)=1.3 \mathrm{~J}
$$

11. Since $v_{m}=A \omega$, the amplitude can be found,

$$
A=\frac{v_{m}}{\omega}=\frac{4 \mathrm{~m} / \mathrm{s}}{6 \mathrm{rad} / \mathrm{s}}=0.667 \mathrm{~m}
$$

The position function for the given velocity function is

$$
y=A \sin \omega t=(0.667 \mathrm{~m}) \sin [(6 \mathrm{rad} / \mathrm{s})(3 \mathrm{~s})]=-0.50 \mathrm{~m}
$$

Your calculator must be in radian mode to get this result.
12. The intensity is a function of distance,

$$
I=\frac{P}{4 \pi r^{2}}
$$

Forming a ratio

$$
\frac{I_{2}}{I_{1}}=\frac{\frac{P}{4 \pi r_{2}^{2}}}{\frac{P}{4 \pi r_{1}^{2}}}=\left(\frac{r_{1}}{r_{2}}\right)^{2}
$$

Solving for r_{2}

$$
\begin{aligned}
& \frac{I_{2}}{I_{1}}=\left(\frac{r_{1}}{r_{2}}\right)^{2} \\
& \frac{r_{1}}{r_{2}}=\sqrt{\frac{I_{2}}{I_{1}}} \\
& r_{2}=r_{1} \sqrt{\frac{I_{1}}{I_{2}}}=(2 \mathrm{~m}) \sqrt{\frac{0.1 \mathrm{~W} / \mathrm{m}^{2}}{0.01 \mathrm{~W} / \mathrm{m}^{2}}}=6.3 \mathrm{~m}
\end{aligned}
$$

13. The speed of a wave in string is

$$
\begin{aligned}
& v=\sqrt{\frac{F}{\mu}} \\
& v^{2}=\frac{F}{\mu} \\
& \mu=\frac{F}{v^{2}} \\
& \frac{m}{L}=\frac{F}{v^{2}} \\
& m=\frac{F}{v^{2}} L=\frac{75 \mathrm{~N}}{(140 \mathrm{~m} / \mathrm{s})^{2}}(5 \mathrm{~m})=0.019 \mathrm{~kg}
\end{aligned}
$$

14. The velocity of the wave is related to the wavenumber and angular frequency

$$
\begin{aligned}
& v=\frac{\omega}{k} \\
& \omega=v k=(60 \mathrm{~m} / \mathrm{s})(3.0 \mathrm{rad} / \mathrm{m})=180 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

The general equation of a wave traveling in the $-x$ direction is

$$
y=A \cos (\omega t+k x)
$$

Substituting the values above,

$$
y=A \cos ((180 \mathrm{rad} / \mathrm{s}) t+(3.0 \mathrm{rad} / \mathrm{m}) x)
$$

15. Since the end of the rope is a free end, the reflected pulse will have the same orientation as the incident pulse. Both pulses will point upward when they meet and

$$
A=A_{1}+A_{2}=(3 \mathrm{~cm})+(4 \mathrm{~cm})=7 \mathrm{~cm}
$$

16. The speed of the wave can be found

$$
v=\sqrt{\frac{F}{\mu}}=\sqrt{\frac{m g}{\mu}}=\sqrt{\frac{(2.10 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}{3.55 \times 10^{-5} \mathrm{~kg} / \mathrm{m}}}=761 \mathrm{~m} / \mathrm{s}
$$

For the lowest frequency, the wavelength is twice the length of the string, $\lambda=2 L=4 \mathrm{~m}$. The frequency is

$$
f=\frac{v}{\lambda}=\frac{761 \mathrm{~m} / \mathrm{s}}{4 \mathrm{~m}}=190 \mathrm{~Hz}
$$

17. The decibel scale is defined as

$$
\beta=10 \log \left(\frac{I}{I_{0}}\right)
$$

Solving for I,

$$
\begin{aligned}
\beta & =10 \log \left(\frac{I}{I_{0}}\right) \\
\beta / 10 & =\log \left(\frac{I}{I_{0}}\right) \\
\frac{I}{I_{0}} & =10^{\beta / 10} \\
I & =I_{0} 10^{\beta / 10}=\left(1.0 \times 10^{-12} \mathrm{~W} / \mathrm{m}^{2}\right) 10^{70 / 10}=1.0 \times 10^{-5} \mathrm{~W} / \mathrm{m}^{2}
\end{aligned}
$$

18. The frequencies for a pipe open at both ends is given by

$$
f_{n}=n \frac{v}{2 L}
$$

where $n=1,2,3$, etc.

$$
f_{1}=1 \frac{v}{2 L}=\frac{340 \mathrm{~m} / \mathrm{s}}{2(1 \mathrm{~m})}=170 \mathrm{~Hz}
$$

The next frequency corresponds to $n=2$

$$
f_{1}=2 \frac{v}{2 L}=\frac{340 \mathrm{~m} / \mathrm{s}}{1 \mathrm{~m}}=340 \mathrm{~Hz}
$$

The frequencies are 170 Hz and 340 Hz .
19. Two waves with similar frequencies create beats.
20. The vehicles are traveling in different directions

The sound travels in the same direction as the sound. Therefore $v_{s}>0$. The car moves against the sound waves and $v_{o}<0$. Using the equation for the Doppler effect

$$
f_{0}=f_{s}\left(\frac{1-\frac{v_{o}}{v}}{1-\frac{v_{s}}{v}}\right)=(550 \mathrm{~Hz})\left(\frac{1-\frac{(-25 \mathrm{~m} / \mathrm{s})}{340 \mathrm{~m} / \mathrm{s}}}{1-\frac{35 \mathrm{~m} / \mathrm{s}}{340 \mathrm{~m} / \mathrm{s}}}\right)=660 \mathrm{~Hz}
$$

