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PHY2053 

Summer 2013 

Final Exam Solutions 

 

 

1. We do not deal with vectors.  We deal with their components 

 

ACB

CBA







 

 

Taking the x-components 
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The y-components 
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The new resultant is 
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The x-component 
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The y-component 
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The magnitude is 
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2. The distance covered by the first car is 
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 For the second car, 
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3. The free body diagram 

 
 

 Use Newton’s second law along the inclined plane (x-axis) 
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 This answer is None of these. 

 

4. Use the free body diagram and Newton’s second law. 

 

 
 

 

 

For the radial component, 
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The radius from the pole is r = L sin30º.  Substituting, 
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For the tangential component, 
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Substituting for T from the radial equation, 
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5. The free body diagram for the rock is 

 
 

Using Newton’s second law for the y-component, 
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The frictional force is 
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N27.1)m/s8.9)(kg5.0)(26.0( 2  mgNf   

 

Use the work-energy theorem. 

 

ncWUK   

 

 Since the parking lot is level U = 0.  Friction does the nonconservative work.  Recall W 

= F x cos  = f x cos 180º = −f x 
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6. Linear momentum is conserved in a collision. 
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 After the collision the cars stick together.  This means, v1f = v2f = vf. 
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7. The ladder is equilibrium.  Take torques about the foot of the ladder. 
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8. There are two systems to work with: the mass hanging from the rope and the rope 

exerting a torque on the cylinder.  The free body diagram for the hanging mass is 

 

 

 
Use Newton’s second law 

 

)(

)(

agmT

ammgT

maF yy






 

 

 The mass accelerates downward so, ay = −a.  For the cylinder, use Newton’s second law 

for rotation, 
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 The torque is due to the tension in the rope wrapped around the cylinder 
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 The moment of inertia for a cylinder is 
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 Newton’s second law for rotation becomes 
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 The mass accelerates as it falls, causing the cylinder to spin faster.  The relationship 

between the acceleration and the angular acceleration is 
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 Substituting into the rotational Newton’s second law equation, 
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The angular velocity is found 
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 This answer is None of these. 

 

9. Since the tube has constant area, the continuity equation implies that the speed of the 

water is constant throughout the pipe.  Using Bernoulli’s equation, 
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 The kinetic energy terms cancel since v1 = v2. 
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10. The period of a simple harmonic oscillator is given by 
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 Forming a ratio, 
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 Here T1 = 5 s and T2 = 10 s.  Substituting 
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 Quadruple the mass. 

 

11. The standard form for a traveling wave is 

 

)cos( kxtAy    

 

 The speed of the wave is v = /k.  For the choices available 

 

Formula (rad/s) k (rad/m) v = /k (m/s) 

))rad/m20()rad/s40cos(( xtAy   40 20 2.0 

))rad/m20()rad/s30cos(( xtAy   30 20 1.5 

))rad/m20()rad/s20cos(( xtAy   20 20 1.0 

))rad/m30()rad/s40cos(( xtAy   40 30 1.3 

))rad/m30()rad/s20cos(( xtAy   20 30 0.67 

 

The combination that gives the largest speed is 
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12. The frequencies for a tube of length L open at both ends are given by 
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For a one meter long tube, the fundamental frequency is 
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For a string resonating at it fundamental frequency,  = 2L = 2m.  The speed of the wave 

in the string is 

 

m/s340)Hz170)(m2(  fv  

 

The speed of a wave on a string is related to the tension in the string and its linear 

density, 
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Solving for the tension, 
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