Chapter 25: Applied Optics
Operation of the Eye
Structure of the Eye

- **Essential parts of the eye**
 - Cornea – transparent outer structure
 - Pupil – opening for light
 - Lens – partially focuses light
 - Retina – location of image
 - Optic nerve – sends image to brain

- **Eye focuses light on retina**
 - Most refraction at cornea
 - Rest of refraction at lens
Iris Regulates Light Entering Eye

The iris is the colored portion of the eye

- A muscular diaphragm controlling pupil size (regulates amount of light entering eye)
- Dilates the pupil in low light conditions
-Contracts the pupil in high-light conditions
Operation of Eye

- Cornea-lens system focuses light onto retina (back surface)
 - Retina contains receptors called rods (110M) and cones (7M)
 - Rods & cones send impulses to brain via optic nerve (1M fibers)
 - Brain converts impulses into our conscious view of the world
Picture of Retina (Seen Through Pupil)
Rods Close Up (Retina Cross Section)
Structure of Rods and Cones

[Diagram showing the structure of rods and cones, including photoreceptor, plasma membrane, rhodopsin, retinal, and various cellular components like mitochondria and Golgi.

Hargrave, 1996]
Color Perception in Rods and Cones

- One type of rod
 - Monochromatic vision
 - Only used for night vision
 - Highly sensitive

- 3 types of cones
 - 3 primary colors ⇒ color vision
 - Not as sensitive as rods

After Bowmaker & Dartnall, 1980
The Eye: Focusing

→ Distant objects
 - The ciliary muscle is relaxed
 - Maximum focal length of eye

→ Near objects
 - The ciliary muscles tenses
 - The lens bulges a bit and the focal length decreases
 - Process is called “accommodation”

→ Focal length of eye (normal)
 - \(f \approx 16.3 \text{ mm} \)
 - \(1/f \approx 1 / 0.0163\text{m} = 60 \, \text{“diopters”} \) (= lens “power”)
 - During accommodation, power \((1/f)\) increases
Example of Image Size on Retina

Example: A tree is 50m tall and 2 km distant. How big is the image on the retina?

\[
\frac{h'}{16} = \frac{50}{2000} \quad h' = 0.4 \text{ mm}
\]
The Eye: Near and Far Points

→ **Near point** is the closest distance for which the lens can accommodate to focus light on the retina
 ◆ Typically at age 10, $p_{\text{near}} \sim 18 \text{ cm}$ (use $p_{\text{near}} = 25 \text{ cm}$ as average)
 ◆ It increases with age (presbyopia)
 ◆ If farsighted, then $p_{\text{near}} > 25$

→ **Far point** is the largest distance for which the lens of the relaxed eye can focus light on the retina
 ◆ For normal vision, far point is at infinity ($p_{\text{far}} = \infty$)
 ◆ If nearsighted, then p_{far} is finite
Farsightedness (Hyperopia)

- The image focuses behind the retina
- See far objects clearly, but not nearby objects ($p_{\text{near}} > 25 \text{ cm}$)
- Not as common as nearsightedness
Correcting Farsightedness

→ A converging lens placed in front of the eye can correct hyperopia
 ◆ $1/f > 0$, rays converge and focus on retina

→ Example: assume $p_{\text{near}} = 200 \text{ cm} = 2 \text{ m}$
 ◆ Goal: See object at 25 cm (normal near point)
 ◆ Strategy: For object at 25 cm, make image appear at near point

\[
\frac{1}{f} = \frac{1}{p} + \frac{1}{q} = \frac{1}{0.25} + \frac{1}{-2.0} = 4 - 0.5 = +3.5 \text{ diopters}
\]
Nearsightedness (Myopia)

→ See near objects clearly, but not distant objects \((p_{\text{far}} < \infty)\)

→ Most common condition (reading, etc)
Correcting Nearsightedness

✍ A diverging lens can be used to correct the condition
 ◆ $1/f < 0$, rays diverge (spread out) and focus on retina

✍ Example: assume $p_{\text{far}} = 50 \text{ cm} = 0.5 \text{ m}$
 ◆ **Goal:** See objects at infinity (normal far point)
 ◆ **Strategy:** For object at infinity, make image appear at eye’s far point

\[
\frac{1}{f} = \frac{1}{p} + \frac{1}{q} = \frac{1}{\infty} + \frac{1}{-0.5} = -2.0 \text{ diopters}
\]
Presbyopia and Age

- Presbyopia is due to a reduction in accommodation range
 - Accommodation range is max for infants (60 – 73 diopters)
 - Shrinks with age, noticeable effect on reading after 40
 - Can be corrected with converging lenses (reading glasses)
Magnifier

- Consider small object held in front of eye
 - Height y
 - Makes an angle θ at given distance from the eye

- Goal is to make object "appear bigger" \Rightarrow Larger θ
Magnifier

- Single converging lens
 - Simple analysis: put eye right behind lens
 - Put object at focal point and image at infinity
 - Angular size of object is θ', bigger!

\[p = f \]
\[q = \infty \]
Angular Magnification (Simple)

- **Without magnifier:** 25 cm is closest distance to view
 - Defined by average near point (younger people can do closer)
 - \(\theta \approx \tan \theta = \frac{y}{25} \)

- **With magnifier:** put object at distance \(p = f \)
 - Image at infinity
 - \(\theta' \approx \tan \theta' = \frac{y}{f} \)

- Define “angular magnification” \(m_\theta = \frac{\theta'}{\theta} \)

\[
\begin{align*}
\theta & \quad \frac{y}{25} & \quad \theta' & \quad \frac{y}{f} \\
\frac{m_\theta}{\theta} & = \frac{\frac{\theta'}{\theta}}{f} & = \frac{25}{f}
\end{align*}
\]
Angular Magnification (Maximum)

- Can do better by bringing object closer to lens
 - Put image at near point, \(q = -25 \) cm
- Analysis
 - \(\theta \approx \tan \theta = y / 25 \)
 - \(\theta' \approx \tan \theta' = y / p \)
 - \(m_\theta = \theta' / \theta = 25 / p \)

\[
\frac{1}{p} + \frac{1}{-25} = \frac{1}{f} \\
\frac{1}{p} = \frac{1}{f} + \frac{1}{25} \\
m_\theta = \frac{25}{p} = \frac{25}{f} + 1
\]
Example

Find angular magnification of lens with $f = 4$ cm

$$m_\theta = \frac{25}{4} = 6.3 \quad \text{Simple}$$

$$m_\theta = \frac{25}{4} + 1 = 7.3 \quad \text{Maximum}$$
Example: Image Size of Magnifier

- How big is projected image of sun?
 - Sun is 0.5° in diameter (0.0087 rad)
 - Image located at focal point. (Why?)
 - Assume f = 5 cm
 - Size is $f \times \theta = 5 \times 0.0087 = 0.0435$ cm

- Energy concentration of 10 cm lens?
 - All solar rays focused on image
 - Energy concentration is ratio of areas
 - Concentration $= (10 / 0.0435)^2 = 53,000!$
 - Principle of solar furnace (mirrors)
Projectors

⇒ Idea: project image of slide onto distant screen

⇒ Put slide near focal point of lens
 ◆ Upside down to make image upright

![Diagram of Projector](image)

\[q = \frac{pf}{p - f} \]
Projector Example

Problem
- Lens of 5 cm focal length
- Lens is 3 m from screen
- Where and how should slide be placed?

Solution: real image required. Why?
- \(q = 3 \text{ m} = +300 \text{ cm} \)
- \(f = 5 \text{ cm} \)
- Find \(p \) from lens equation
 \[
 \frac{1}{p} = \frac{1}{f} - \frac{1}{q}
 \]

\[
 p = \frac{qf}{q-f} = \frac{(300)(5)}{300-5} = 5.085 \text{ cm}
\]

So 5.085 cm from lens, just past focal point