1. $B \propto v, q$

2. B reverses direction if v reverses direction or q changes sign
3. The field varies as $\sin \varphi$ where φ is the angle relative to the direction of v
4. B is tangent to circles drawn about v in planes perpendicular to v and the direction is given by the right hand rule.
5. B decreases as $1 / r^{2}$ where r is the perpendicular distance from the direction of v.

(b)

$$
\begin{gathered}
\vec{B}=K \frac{q \vec{v} \times \hat{r}}{r^{2}} \\
\Rightarrow \vec{B}=K \frac{q \vec{v} \times \vec{r}}{r^{3}} \\
K=\frac{\mu_{0}}{4 \pi}=10^{-7} \mathrm{~T} . \mathrm{m} / \mathrm{A} \\
\Rightarrow \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{q \vec{v} \times \vec{r}}{r^{3}} \quad \Rightarrow B=\frac{\mu_{0}}{4 \pi} \frac{|q| v \sin \phi}{r^{2}}
\end{gathered}
$$

$$
d \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{i d \vec{s} \times \vec{r}}{r^{3}} \quad \text { Biot-Savart law }
$$

B due to a straight current carrying wire

Two parallel currents

Defining Ampere and Coulomb

- The force between parallel conductors can be used to define the Ampere (A)
- If two long, parallel wires 1 m apart carry the same current, and the magnitude of the magnetic force per unit length is $2 \times 10^{-7} \mathrm{~N} / \mathrm{m}$, then the current is defined to be 1 A
- The SI unit of charge, the Coulomb (C), can be defined in terms of the Ampere
- If a conductor carries a steady current of 1 A, then the quantity of charge that flows through any cross section in 1 second is 1 C

Solenoid

(a)

Coulomb

$$
\vec{E}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r^{2}} \hat{r} \quad \oint \vec{E} \bullet d \vec{A}=\frac{q}{\varepsilon_{0}}
$$

Gauss

Biot-Savart

$$
d \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{i d \vec{s} \times \hat{r}}{r^{2}}
$$

Ampere
$\oint \vec{B} \bullet d \vec{s}=\mu_{0} i$

Ampere's law and a solenoid

Ampere's law and a toroid

