
Dimensional Analysis

by Prof. Alan Dorsey

The first step in modeling any physical phenomena is the identification of the relevant
variables, and then relating these variables via known physical laws. For sufficiently simple
phenomena we can usually construct a quantitative relationship among these variables from
first principles; however, for many complex phenomena (which often occur in engineering
applications) such an ab initio theory is often difficult, if not impossible. In these situations
modeling methods are indispensable, and one of the most powerful modeling methods is
dimensional analysis. You have probably encountered dimensional analysis in your previous
physics courses when you were admonished to “check your units” to ensure that the left
and right hand sides of an equation had the same units (so that your calculation of a force
had the units of kg m/s2). In a sense, this is all there is to dimensional analysis, although
“checking units” is certainly the most trivial example of dimensional analysis (incidentally,
if you aren’t in the habit of checking units, do it!). Here we will use dimensional analysis
to actually solve problems, or at least infer some information about the solution. Much of
this material is taken from Refs. [1] and [2]; Ref. [3] provides many interesting applications
of dimensional analysis and scaling to biological systems (the science of allometry).

The basic idea is the following: physical laws do not depend upon arbitrariness in the
choice of the basic units of measurement. In other words, Newton’s second law, F = ma,
is true whether we choose to measure mass in kilograms, acceleration in meters per second
squared, and force in newtons, or whether we measure mass in slugs, acceleration in feet per
second squared, and force in pounds. As a concrete example, consider the angular frequency
of small oscillations of a point pendulum of length l and mass m:

ω =

√
g

l
, (1)

where g is the acceleration due to gravity, which is 9.8 m/s2 on earth (in the SI system of
units; see below). To derive Eq. (1), one usually needs to solve the differential equation which
results from applying Newton’s second law to the pendulum (do it!). Let’s instead deduce
(1) from dimensional considerations alone. What can ω depend upon? It is reasonable to
assume that the relevant variables are m, l, and g (it is hard to imagine others, at least for
a point pendulum). Now suppose that we change the system of units so that the unit of
mass is changed by a factor of M , the unit of length is changed by a factor of L, and the
unit of time is changed by a factor of T . With this change of units, the units of frequency
will change by a factor of T−1, the units of velocity will change by a factor of LT−1, and
the units of acceleration by a factor of LT−2. Therefore, the units of the quantity g/l will
change by T−2, and those of (g/l)1/2 will change by T−1. Consequently, the ratio

Π =
ω√
g/l

(2)

1



is invariant under a change of units; Π is called a dimensionless number. Since it doesn’t
depend upon the variables (m, g, l), it is in fact a constant. Therefore, from dimensional
considerations alone we find that

ω = const.×
√

g

l
. (3)

A few comments are in order: (1) the frequency is independent of the mass of the pen-
dulum bob, a somewhat surprising conclusion to the uninitiated; (2) the constant cannot
be determined from dimensional analysis alone. These results are typical of dimensional
analysis—uncovering often unexpected relations among the variables, while at the same
time failing to pin down numerical constants. Indeed, to fix the numerical constants we need
a real theory of the phenomena in question, which goes beyond dimensional considerations.

1 Units

Before proceeding further with dimensional considerations we first need to discuss units of
measurement.

1.1 The SI system of units

In this course we will adopt the SI system of units,1 which is described in some detail in the
Physicist’s Desk Reference [4] (which I will abbreviate as PDR from now on), pp. 4–10. In
the SI system the base, or defined, units, are the meter (m), the kilogram (kg), the second (s),
the kelvin (K), and the ampere (A).2 The definitions of these units in terms of fundamental
physical processes are given in the PDR. All other units are derived. For instance, the SI
unit of energy, the joule (J), is equal to 1 kg m2/s2. The derived units are also listed in the
PDR. The SI system is referred to as a LMT -class, since the defined units are length L, mass
M , and time T (if we add thermal and electrical phenomena, then we have a LMTθI-class
in the SI system).

1.2 Atomic units

The SI system of units is not the only possible choice, however, and often the choice of units
is dictated by the scale of the physical phenomena under consideration. For instance, in
studying phenomena at the atomic and molecular level it is useful to choose a unit of length
which is comparable to the size of an atom. We do this by using the electron charge e as the
unit of charge, and the electron mass me as the unit of mass. At the atomic level the forces
are all electromagnetic, and therefore the energies are always proportional to e2/4πε0, which
has dimensions ML3T−2. Another quantity that appears in quantum physics is h̄, Planck’s

1In some older texts this is referred to as the MKS system.
2We should also add the mole (mol) and the candela (cd), but these will seldom enter into our models.
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constant divided by 2π, which has dimensions ML2T−1. Dimensional analysis then tells us
that the atomic unit of length is

aB =
h̄2

me(e2/4πε0)
= 0.529× 10−10 m. (4)

This is called the Bohr radius, or simply the bohr, because in the Bohr model it is the radius
of the smallest orbit for an electron circling a fixed proton.

One can similarly find the unit of time by dimensional analysis. Rather than do this
directly, we find first the atomic unit of energy, which is

Eh =
e2

4πε0

1

aB

=

(
e2

4πε0

)2
me

h̄2 = 4.36× 10−18 J = 27.2 eV, (5)

where eV=“electron volt”=1.6 × 10−19 J; this is the kinetic energy acquired by an electron
which is accelerated from rest through a potential difference of one Volt. The energy Eh is
called the hartree, and is twice the ground state energy of an electron circling a fixed proton.
The unit of time is then h̄/Eh.

It is worth noting that in atomic units the unit of velocity is aB/(h̄/Eh) = e2/(4πε0h̄);
the ratio of this velocity to the speed of light is a dimensionless number called the fine
structure constant α:

α =
(e2/4πε0)

h̄c
≈ 1

137
. (6)

The fact that this number is small is important when treating the interaction of radiation
with matter.

2 Dimensions, dimensional homogeneity, and indepen-

dent dimensions

Returning to the discussion above, recall that if the units of length are changed by a factor
of L, and the units of time are changed by a factor of T , then the units of velocity change
by a factor of LT−1. We call LT−1 the dimensions of the velocity; it tells us the factor by
which the numerical value of the velocity changes under a change in the units (within the
LMT -class). Following a convention suggested by Maxwell, we denote the dimensions of a
physical quantity φ by [φ]; thus, [v] = LT−1. A dimensionless quantity would have [φ] = 1;
i.e., its numerical value is the same in all systems of units within a given class. What about
more complicated quantities such as force? From Newton’s second law, F = ma, so that
[F ] = [m][a] = MLT−2. Proceeding in this way, we can easily construct the dimensions of
any physical quantity; some of the more commonly encountered quantities are included in
Table 1.

We see that all of the dimensions in the Table are power law monomials, of the form
(in the LMT -class)

[φ] = CLaM bT c, (7)
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Table 1: Dimensions of some commonly encountered physical quantities in the LMTθI-class.

[L] Length L
[M ] Mass M
[T ] Time T
[v] Velocity LT−1

[a] Acceleration LT−2

[F ] Force MLT−2

[ρ] Mass density ML−3

[p] Pressure ML−1T−2

[α] Angle 1
[E] Energy ML2T−2

[θ] Temperature θ
[S] Entropy ML2T−2θ−1

[I] Electric current I
[Q] Electric charge IT
[E] Electric field MLT−3I−1

[B] Magnetic field MT−2I−1

where C and (a, b, c) are constants. In fact, this is a general result which can be proven
mathematically; see Sec. 1.4 of Barenblatt’s book, Ref. [1]. This property is often called
dimensional homogeneity, and is really the key to dimensional analysis. To see why this
is useful, consider again the determination of the period of a point pendulum, in a more
abstract form. We have for the dimensions [ω] = T−1, [g] = LT−2, [l] = L, and [m] = M .
If ω is a function of (g, l,m), then its dimensions must be a power-law monomial of the
dimensions of these quantities. We then have

[ω] = T−1

= [g]a[l]b[m]c

= (LT−2)aLbM c

= La+bT−2aM c, (8)

with a, b, and c constants which are determined by comparing the dimensions on both sides
of the equation. We see that

a + b = 0, −2a = −1, c = 0. (9)

The solution is then a = 1/2, b = −1/2, c = 0, and we recover Eq. (2).
A set of quantities (a1, . . . , ak) is said to have independent dimensions if none of

these quantities have dimensions which can be represented as a product of powers of the
dimensions of the remaining quantities. As an example, the density ([ρ] = ML−3), the
velocity ([v] = LT−1), and the force ([F ] = MLT−2) have independent dimensions, so that
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there is no product of powers of these quantities which is dimensionless.3 On the other hand,
the density, velocity, and pressure ([p] = ML−1T−2) are not independent, for we can write
[p] = [ρ][v]2; i.e., p/(ρv2) is a dimensionless quantity.

Now suppose we have a relationship between a quantity a which is being determined
in some experiment (which we will refer to as the governed parameter), and a set of quantities
(a1, . . . , an) which are under experimental control (the governing parameters), which is of
the form

a = f(a1, . . . , ak, ak+1, . . . an), (10)

where (a1, . . . , ak) have independent dimensions. For example, this would mean that the
dimensions of the governed parameter a is determined by the dimensions of (a1, . . . , ak),
while all of the as’s with s > k can be written as products of powers of of the dimensions
of (a1, . . . , ak); e.g., ak+1/a

p
1 · · · ar

k, would be dimensionless, with (p, . . . , r) an appropriately
chosen set of constants. With this set of definitions, it is possible to prove that Eq. (10) can
be written as

a = ap
1 · · · ar

kΦ

(
ak+1

a
pk+1

1 · · · ark+1

k

, . . . ,
an

apn
1 · · · arn

k

)
, (11)

with Φ some function of dimensionless quantities only. The great simplification is that while
the function f in Eq. (10) was a function of n variables, the function Φ in Eq. (11) is only
a function of n − k variables. Eq. (11) is a mathematical statement of Buckingham’s Π-
Theorem, which is the central result of dimensional analysis. The formal proof can again be
found in Barenblatt’s book [1]. Dimensional analysis cannot supply us with the dimensionless
function Φ—we need a real theory for that.

As a simple example of how this works, let’s return to the pendulum, but this time
we’ll assume that the mass can be distributed, so that we relax the condition of the mass
being concentrated at a point. The governed parameter is the frequency ω; the governing
parameters are g, l (which we can interpret as the distance between the pivot point and the
center of mass), m, and the moment of inertia about the pivot point, I. Since [I] = ML2,
the set (g, m, l, I) is not independent; we can choose as our independent parameters (g, m, l)
as before, with I/ml2 a dimensionless parameter. In the notation developed above, n = 4
and k = 3. Therefore, dimensional analysis tells us that

ω =

√
g

l
Φ

(
I

ml2

)
, (12)

with Φ some function which cannot be determined from dimensional analysis alone; we need
a theory in order to determine it.

3 Examples

Some of the preceding discussion may have seemed a little abstract; I will try to flesh it out
a bit with several examples.

3Prove this formally by writing [F ]a[v]b[ρ]c = 1, and then show that the only solution is a = b = c = 0.
Alternatively, show that it is impossible to write [F ] = [ρ]a[v]b for any a, b.
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3.1 Oscillations of a star

A star undergoes some mode of oscillation. How does the frequency ω of oscillation depend
upon the properties of the star? The first step is the identification of the physically relevant
variables. Certainly the density ρ and the radius R are important; we’ll also need the grav-
itational constant G which appears in Newton’s law of universal gravitation. We could add
the mass m to the list, but if we assume that the density is constant as a first approximation,
then m = ρ(4πR3/3), and the mass is redundant. Therefore, ω is the governed parameter,
with dimensions [ω] = T−1, and (ρ,R, G) are the governing parameters, with dimensions
[ρ] = ML−3, [R] = L, and [G] = M−1L3T−2 (check the last one). You can easily check that
(ρ,R, G) have independent dimensions; therefore, n = 3, k = 3, so the function Φ is simply
a constant in this case. Next, determine the exponents:

[ω] = T−1

= [ρ]a[R]b[G]c

= Ma−cL−3a+b+3cT−2c. (13)

Equating exponents on both sides, we have

a− c = 0, −3a + b + 3c = 0, −2c = −1. (14)

Solving, we find a = c = 1/2, b = 0, so that

ω = C
√

Gρ, (15)

with C a constant. We see that the frequency of oscillation is proportional to the square
root of the density, and independent of the radius. Once again, the determination of C
requires a real theory of stellar oscillation, but the interesting dependence upon the physical
parameters has been obtained from dimensional considerations alone.

3.2 Gravity waves on water

Next consider waves on the surface of water, which are called gravity waves (or sometimes
capillary waves). How does the frequency ω depend upon the wavenumber4 k of the wave?
The relationship ω = ω(k) is known as the dispersion relation for the wave. The relevant
variables would appear to be (ρ, g, k), which have dimensions [ρ] = ML−3, [g] = LT−2 and
[k] = L−1; these quantities have independent dimensions, so n = 3, k = 3. Now we can
determine the exponents:

[ω] = T−1

= [ρ]a[g]b[k]c

= MaL−3a+b−cT−2b, (16)

4Recall that k = 2π/λ, with λ the wavelength of the wave.
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so that
a = 0, −3a + b− c = 0, −2b = −1, (17)

with the solution a = 0, b = c = 1/2. Therefore,

ω = C
√

gk, (18)

with C another undetermined constant. We see that the frequency of water waves is propor-
tional to the square root of the wavenumber, in contrast to sound or light waves, for which
the frequency is proportional to the wavenumber. This has the interesting consequence that

the group velocity of these waves is vg = ∂ω/∂k = (C/2)
√

g/k, while the phase velocity is

vφ = ω/k = C
√

g/k, so that vg = vφ/2. Recall that the group velocity describes the large
scale “lumps” which would occur when we superimpose two waves, while the phase velocity
describes the short scale “wavelets” inside the lumps. For water waves these wavelets travel
twice as fast as the lumps.

You might worry about the effects of surface tension σ on the dispersion relationship.
We can include these in our dimensional analysis by recalling that the surface tension is the
energy per unit area of the surface of the water, so it has dimensions [σ] = MT−2. The
dimensions of the surface tension are not independent of the dimensions of (ρ, g, k); in fact,
it is easy to show that [σ] = [ρ][g][k]−2, so that σk2/ρg is dimensionless. Then using the
same arguments as before, we have

ω =
√

gkΦ

(
σk2

ρg

)
, (19)

with Φ some undetermined function. A calculation of the dispersion relation for gravity
waves starting from the fundamental equations of fluid mechanics [5] gives

ω =
√

gk
√

1 + σk2/ρg, (20)

so that our function Φ(x) is
Φ(x) =

√
1 + x. (21)

Dimensional analysis enabled us to deduce the correct form of the solution, i.e., the possible
combinations of the variables. Of course, only a complete theory could provide us with the
function Φ(x).

What have we gained? We originally started with ω being a function of the four
variables (ρ, g, k, σ); what dimensional analysis tells us is that it is really only a function
of the combination σk2/ρg, even though we don’t know the function. Notice that this
is an important fact if you are trying to measure the dependence of ω on the physical
parameters (ρ, g, k, σ). If you needed to make (say) 10 separate measurements on each
variable while holding the others fixed, then without dimensional analysis you would naively
need to make 104 separate measurements. Dimensional analysis tells you that you only really
need to measure the combinations gk and σk2/ρg, so only need to make 102 measurements
to characterize ω. Dimensional analysis can be a labor-saving device!
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3.3 Energy in a nuclear explosion

We next turn to a famous example worked out by the eminent British fluid dynamicist G.
I. Taylor.5 In a nuclear explosion there is an essentially instantaneous release of energy
E in a small region of space. This produces a spherical shock wave, with the pressure
inside the shock wave thousands of times greater that the initial air pressure, which may
be neglected. How does the radius R of this shock wave grow with time t? The relevant
governing variables are E, t, and the initial air density ρ0, with dimensions [E] = ML2T−2,
[t] = T , and [ρ0] = ML−3. This set of variables has independent dimensions, so n = 3,
k = 3. We next determine the exponents:

[R] = L

= [E]a[ρ0]
b[t]c

= Ma+bL2a−3bT−2a+c (22)

so that
a + b = 0, 2a− 3b = 1, −2a + c = 0, (23)

with the solution a = 1/5, b = −1/5, c = 2/5. Therefore

R = CE1/5ρ
−1/5
0 t2/5, (24)

with C an undetermined constant. If we could plot the radius R of the shock as a function
of time t on a log-log plot, the slope of the line should be 2/5. The intercept of the graph
would provide information about the energy E released in the explosion, if the constant C
could be determined. By solving a model shock-wave problem Taylor estimated C to be
about 1; he was able to take de-classified movies of nuclear tests, and using his model, infer
the yield of the bombs [6]. This data, of course, was strictly classified; it came as a surprise
to the American intelligence community that this data was essentially publicly available to
those well versed in dimensional analysis.

3.4 Solution of the diffusion equation

Dimensional analysis can also be used to solve certain types of partial differential equations.
If this seems too good to be true, it isn’t. Here we will concentrate on the solution of the
diffusion equation. This material is optional, but you might find it interesting if you have
some background in differential equations.

We’ll start by deriving the one-dimensional diffusion, or heat, equation.6 Let τ(x, t)
represent the temperature of a metal bar at a point x at time t (I’ll use τ to avoid confusion
with the symbol for the dimension of time, T ). The first step is the derivation of a continuity
equation for the heat flow in the bar. Let the bar have a cross sectional area A, so that the

5Taylor’s name is associated with many phenomena in fluid mechanics: the Rayleigh-Taylor instability,
Saffman-Taylor fingering, Taylor cells, Taylor columns, etc.

6I prefer the term diffusion equation, since we are just describing the diffusion of heat.
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infinitesimal volume of the bar between x and x+∆x is A ∆x. The quantity of heat contained
in this volume is cpτA ∆x, with cp the specific heat at constant pressure per unit volume; it
has dimensions [cp] = ML−1T−2θ−1. In a time interval dt this heat changes by an amount
cp(∂τ/∂t)A ∆xdt due to the change in temperature. This change in the heat must come from
somewhere, and is the result of a flux of heat q(x, t) through the area A (q is the heat flowing
through a unit area per unit time). Into the left side of the volume an amount of heat qAdt
flows in a time dt; on the right hand side of the volume a quantity A[q +(∂q/∂x)∆x]dt flows
out in a time dt, so that the net accumulation of heat in the volume is −A(∂q/∂x)∆xdt.
Equating the two expressions for the rate of change of the heat in the volume A ∆x, we find

cp
∂τ

∂t
= −∂q

∂x
, (25)

which is the equation of continuity. It is a mathematical expression of the conservation of
heat in the infinitesimal volume A ∆x. We supplement this with a phenomenological law of
heat conduction, known as Fourier’s law: the heat flux is proportional to the negative of the
local temperature gradient (heat flows from a hot reservoir to a cold reservoir):

q = −κ
∂τ

∂x
, (26)

with κ the thermal conductivity of the metal bar. The thermal conductivity is usually
measured in units of W cm−1 K−1, and has dimensions [κ] = MLT−3θ−1. See the Table on
p. 38 of the PDR for the thermal conductivities of some materials. Combining Eqs. (25) and
(26), we obtain the diffusion equation (often called the heat equation)

∂τ

∂t
= D

∂2τ

∂x2
, (27)

where D = κ/cp is the thermal diffusivity of the metal bar; it has dimensions [D] = [κ]/[cp] =
L2T−1, as it should. Eq. (27) is the diffusion equation for heat. The diffusion equation will
appear in many other contexts during this course. It usually results from combining a
continuity equation with an empirical law which expresses a current or flux in terms of some
local gradient.

Suppose that the bar is very long, so that we can consider the idealized case of an
infinite bar. At an initial time t = 0, we add an amount of heat Q0 (with dimensions
[Q0] = ML2T−2) at some point of the bar, which we will arbitrarily call x = 0. We could do
this, for instance, by briefly holding a match to the bar. The heat is conserved at all times,
so that

cpA
∫ ∞

−∞
τ(x, t)dx = Q0. (28)

How does this heat diffuse away from x = 0 as a function of time t; i.e., what is τ(x, t)?
We first identify the important parameters. The temperature τ certainly depends upon x, t,
and the diffusivity D; we see from Eq. (28) that it also depends upon the initial conditions
through the combination Q ≡ Q0/cpA. What are the dimensions? We have [x] = L, [t] = T ,
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[D] = L2T−1, and [Q] = Lθ, so that n = 4. These dimensions are not independent, for
the quantity x/(Dt)1/2 is dimensionless, so that k = 3. We will choose as our independent
quantities (t,D, Q). Now express τ in terms of these variables:

[τ ] = θ

= [t]a[D]b[Q]c

= L2b+cT a−bθc. (29)

We find
2b + c = 0, a− b = 0, c = 1, (30)

which has the solution a = −1/2, b = −1/2, c = 1. Therefore, dimensional analysis tells us
that the solution of the diffusion equation is of the form

τ(x, t) =
Q

(Dt)1/2
Φ

(
x

(Dt)1/2

)
, (31)

with Φ a function which we still need to determine. The important point is that Φ is only
a function of the combination x/(Dt)1/2, and not x and t separately. To determine Φ, let’s
introduce the dimensionless variable z = x/(Dt)1/2. Now use the chain rule to calculate
various derivatives of τ :

∂τ

∂x
=

Q

(Dt)1/2

∂z

∂x

dΦ(z)

dz

=
Q

Dt

dΦ(z)

dz
, (32)

∂2τ

∂x2
=

Q

(Dt)3/2

d2Φ(z)

dz2
, (33)

∂τ

∂t
= −1

2

Q

D1/2t3/2
Φ(z) +

Q

(Dt)1/2

∂z

∂t

dΦ(z)

dz

= −1

2

Q

D1/2t3/2

[
Φ(z) + z

dΦ(z)

dz

]
. (34)

Substituting Eqs. (33) and (34) into the diffusion equation (27), and canceling various factors,
we obtain a differential equation for Φ,

d2Φ(z)

dz2
+

z

2

dΦ(z)

dz
+

1

2
Φ(z) = 0. (35)

Dimensional analysis has reduced the problem from the solution of a partial differential equa-
tion in two variables to the solution of an ordinary differential equation in one variable! The
normalization condition, Eq. (28), becomes in these variables

∫ ∞

−∞
Φ(z) dz = 1. (36)
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You might think that Eq. (35) is hard to solve; however, it turns out that it is an
exact differential,

d

dz

[
dΦ

dz
+

z

2
Φ

]
= 0, (37)

which we can integrate once to obtain

dΦ

dz
+

z

2
Φ = const. (38)

However, since any physically reasonable solution would have both Φ → 0 and dΦ/dx → 0 as
x →∞, the integration constant must be zero. We now need to solve a first order differential
equation, which we do by dividing Eq. (38) by Φ, multiplying by dz, and integrating, with
the result that ln Φ = −z2/4 + const., or

Φ(z) = Ce−z2/4, (39)

with C a constant. To determine C, we use the normalization condition, Eq, (36):

C
∫ ∞

−∞
e−z2/4dz = C(4π)1/2 = 1, (40)

where the integral (known as a Gaussian integral) can be found in integral tables. Therefore
C = 1/(4π)1/2. Returning to our original variables, we have

τ(x, t) =
Q

(4πDt)1/2
e−x2/4Dt. (41)

This is the complete solution for the temperature distribution in a one-dimensional bar due
to a point source of heat.7

4 Similarity, modeling, and estimating

The notion of similarity is familiar from geometry. Two triangles are said to be similar if all
of their angles are equal, even if the sides of the two triangles are of different lengths. The
two triangles have the same shape; the larger one is simply a scaled up version of the smaller
one. This notion can be generalized to include physical phenomena. This is important when
modeling physical phenomena—for instance, testing a prototype of a plane with a scale model
in a wind tunnel. The design of the model is dictated by dimensional analysis.

Return to the mathematical statement of the Π-Theorem, Eq. (11). We can identify
the following dimensionless parameters:

Π =
a

ap
1 · · · ar

k

, Π1 =
ak+1

apk+1
1 · · · ark+1

k

, (42)

7For the mathematically sophisticated, I’ll mention that the same solution can be obtained using the
method of Fourier transforms applied to the diffusion equation.
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and so on, such that Eq. (11) can be written as

Π = Φ(Π1, . . . , Πn−k). (43)

The parameters (Π, Π1, . . . , Πn−k) are known as similarity parameters. Now if two physical
phenomena are similar, they will be described by the same function Φ. Denote the similarity
parameters of the model and the prototype by the superscripts m and p, respectively. Then
if the two are similar, their similarity parameters are equal:

Π
(p)
1 = Π

(m)
1 , . . . , Π

(p)
n−k = Π

(m)
n−k, (44)

so that
Π(p) = Π(m). (45)

Therefore, in order to have an accurate physical model of a prototype, we must first identify
all of the similarity parameters, and then insure that they are equal for the model and the
prototype.

Finally, we come to estimating. In this course we will often make order of magnitude
estimates, where we try to obtain an estimate to within a factor of ten (sometimes better,
sometimes worse). This means that we often drop factors of two, etc., although one should
exercise some caution in doing this. Estimating in this fashion is often aided by first doing
some dimensional analysis. Once we know how the governed parameter (which we are trying
to estimate) scales with other quantities, we can often use our own personal experience as a
guide in making the estimate. More examples of this later in the course (especially elastic
similarity).
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