Homework A

1. (a) $2+\frac{1}{2}+\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+\ldots=$??
(b) $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6} \ldots=$??
2. Expand $\left(1-2 t z+t^{2}\right)^{-1 / 2}$ in powers of t assuming that t is small. Collect the coefficients of t^{0}, t^{1}. and t^{2}.
3. The displacement z of a particle of rest mass m_{0}, resulting from a constant force $m_{0} g$ along the z-axis is

$$
z=\frac{c^{2}}{g}\left\{\left[1+\left(g \frac{t}{c}\right)^{2}\right]^{1 / 2}-1\right\}
$$

including relativistic effect. Find the displacement z as a power series in time t.
Compare with the classical result,

$$
z=\frac{1}{2} g t^{2} .
$$

4. A magnetic system has specific heat which is a function of applied magnetic field, H and temperature, T. It can be represented theoretically by

$$
C(T, H)=C(H / T)=N \frac{(H / T)^{2}}{\cosh ^{2}(H / T)}
$$

where N is constant.
(a) Expand $C(T, H)$ in power of (H / T) up to $(H / T)^{4}$ assuming $H \ll T$.
(b) Sketch (freehand) the behavior of your answer as a function of $x=H / T$.
5. (1.4) For parts (a) and (b) express answers as whole numbers to a precision of ± 1, for (c) use Stirling's formula and express answer as 10 raised to some power.
6. The probability $P(n)$ that an event characterized by a probability p occurs n times in N trials is given by the binomial distribution

$$
P(n)=\frac{N!}{n!(N-n)!} p^{n}(1-p)^{N-n} .
$$

Consider a case where $p \ll 1$ and $N \gg 1$.
(a) Show that $(1-p)^{N-n} \approx \mathrm{e}^{-N p}$ using $\ln (1-p) \approx-p$.
(b) Show that $N!/(N-n)!\approx N^{n}$.
(c) Therefore, you can show that $P(n)=\frac{\lambda^{n}}{n!} e^{-\lambda}$ where $\lambda=N p$. You have just demonstrated that the binomial distribution for small p and large N turns into the Poisson distribution!
7. (2.5)
8. (3.3)
9. (3.4)
10. (3.5) Do (a) through (g), skip (h) and (i), and do (j).

