Errors in "Concepts in Thermal Physics" (2007 reprint)

by S.J. Blundell and K.M. Blundell

- page 2: the US budget deficit should be closer to $10^{13} \$$
- page 44: Ex.(4.2) Example 3.2 should be Example 4.3
- page 52: Exercise (5.2) atomic mass of He is 4
- page 56: 1st line of eqn $6.14 \mathrm{~d} v$ and $\mathrm{d} \theta$ written twice
- page 62: eqn 7.1, exchange 235 and 238. This expression is of course the ratio of effusion rates.
- page 64: $\mathrm{d} M / \mathrm{d} t$ should be $|\mathrm{d} M / \mathrm{d} t|$ in 7.12 and in the line before
- page 67: Exercise (7.1) better mention that the residual gas is N_{2} and $\mathrm{T}=300 \mathrm{~K}$
- page 75: 3 lines after eqn 9.2, $\mathrm{d} v$ rather than $\mathrm{d} c$
- page 79: line 10 "per unit time per unit area"
- page 80: In the first bullet point, it is λ which is proportional to n^{-1} and not κ
- page 90: remove the " $1 / 2$ " in Eq. (10.21)
- page 97: 5 lines after eqn 10.56, $v=\eta / \rho$
- page 109: Ex. (11.2) all the quantities are molar. Better to use $\mathrm{u}_{\mathrm{m}}, \mathrm{c}_{\mathrm{m}}$, etc.
- page 111: second last bullet, C_{v} should be C_{p}
- page 119: Exercise (12.3) A and B do not have to be constant
- page 131: Exercise (13.4) heat capacity of ideal gas is constant
- page 140: Eq. (14.25) overall (-) sign missing
- page 167: Eq. $(16.24) \mathrm{V}=+(\partial \mathrm{G} / \partial \mathrm{p})_{\mathrm{T}}$
- page 171: P should be p in eqn 16.49
- page 173: Ex. (16.24) in the first line should be $\left(\partial \mathrm{C}_{\mathrm{p}} / \partial \mathrm{p}\right)_{\mathrm{T}}$
- page 177: line 2 of eqn 16.84, replace Maxwell's relations by reciprocal theorem
- page 192: Exercise better mention $(\partial \mathrm{f} / \partial \mathrm{T})_{\mathrm{L}}>0$
- page 214: eqn 20.27, after the second $=,-\Delta / 2 T$ rather than $-\Delta / T$
- page 221: eqn 21.1 and following line: normalization should be $2^{3 / 2} / \mathrm{V}^{1 / 2}$, not $1 / \mathrm{V}^{1 / 2}$ [though this doesn't affect following argument]
- page 241: eqn 22.67, $K=p_{\mathrm{B}} / p_{\mathrm{A}}$; the line under eqn $22.67, K \ll 1$ and the line below this line $K \gg 1$.
- page 241 , eqn $22.70, \mathrm{~d} G=\left(\mu_{\mathrm{B}}-\mu_{\mathrm{A}}\right) \mathrm{d} N_{\mathrm{B}}$.
- page 241: eqn 22.71, $K=p_{\mathrm{A}} / p_{\mathrm{B}}$ should be $K=p_{\mathrm{B}} / p_{\mathrm{A}}$.
- page 243: eqn 22.82 and 22.84 , no subscript j for the p in the denominator
- page 249: line after eqn 23.11, replace K^{-1} by K^{-4}
- page 255: eqn 23.44 should be negative.
- page 256: On this page, U should be the energy density u.
- page 260: eqn 23.60 , on the right side g_{2} / g_{1}, not g_{1} / g_{2}; eqn 23.61 the sign on the exponential should be plus
- page 288: Fig. 26.6. Interchange "gas" and "liquid" labels (obviously!)
- page 290: eqn 26.41: No V on the left, just p, minus sign in front of a / V^{2}
- page 296: Exercise (26.1) the volume $\mathrm{V}=\mathrm{V}_{\mathrm{c}}=3 \mathrm{~b}$
- page 305: below Eq. (28.1) should be transition temperature not critical temperature
- page 337: There should not be $(2 S+1)$ in eqn 30.3.
- page 338: Eq. 30.8, missing ln before Z.
- page 340: eqn 30.22 , argument of Θ should be $\left(E_{k}-E_{\mathrm{F}}\right)$
- page 345: there should be an n inside the integral of 30.48.
- page 346: Sentence before (30.51) should say "Equation 30.43 ..."
- page 347: eqn 30.55 , first expression should be $1 /\left(z^{-1}-1\right)$
- page 444: between eqn C. 41 and C. 42 , dy rather than $\mathrm{d} z$
- page 445: delete 2 in the numerator in eqn C. 55

