Final Quiz

In some sort of crude sense which no vulgarity, no humour, no overstatement can quite extinguish, the physicists have known sin; and this is a knowledge which they cannot lose. J. Robert Oppenheimer

(1) An electromagnetic plane wave, propagating in vacuum, has an electric field given by $E = E_0 \cos(kx - \omega t)$ and is normally incident on a perfect conductor at x = 0, as shown in the figure below. Immediately to the left of the conductor, the total electric field E and the total magnetic field B are given by which of the following? (21 points)

#61m 2001 B. Kam

(A)
$$E = 0$$
 , $B = 0$
(B) $E = 2E_0 \cos(\omega t)$, $B = 0$
(C) $E = 0$, $B = (2E_0/c)\cos(\omega t)$
(D) $E = 2E_0 \cos(\omega t)$, $B = (2E_0/c)\cos(\omega t)$

(E)
$$E = 2E_0 \cos(\omega t)$$
 ,

$$B = (2E_0/c)\sin(\omega t)$$

x = 0

(2) A coil of 15 turns, each of radius 1 centimeter, is rotating at a constant angular velocity $\omega = 300$ radians per second in a uniform magnetic field of 0.5 tesla, as shown in the #86 m direction is 9 ohms, what points)

Fram(A) $225\pi \sin(\omega t)$ figure below. Assume at time t=0 that the normal $\hat{\mathbf{n}}$ to the coil plane is along the ydirection and that the self-inductance of the coil can be neglected. If the coil resistance is 9 ohms, what will be the magnitude of the induced current in milliamperes? (21

- - (B) $250\pi \sin(\omega t)$
 - (C) $0.08\pi \cos(\omega t)$
 - (D) $1.7\pi \cos(\omega t)$
 - $\overline{(E)} 25\pi \cos(\omega t)$

(3) A uniformly charged sphere of total charge Q expands and contracts between radii R_1 and R_2 at a frequency f. The total power radiated by the sphere is (21 points)

- (A) proportional to Q
- 2001 5 xam (B) proportional to f^2
 - (C) proportional to f^4
 - (D) proportional to (R_2/R_1)
 - (E) zero