
BCS Theory and Superconductivity

1. Introduction

Superconductivity discovered in 1911 by Onnes (9), is the
quantum phenomena that certain materials exhibit un-
der particular magnetic and temperature regimes. There
existed no consistent microscopic theory that described
why superconductivity arose, from the time it was dis-
covered until the 1950’s, only macroscopic theories that
allowed you to calculate certain thermodynamic and elec-
trodynamic quantities. In 1957, two papers released by
Bardeen, Cooper, and Schrieffer (1) (2) described the
conceptual and mathematical foundation for conventional
superconductivity, the Bardeen-Cooper-Schrieffer (BCS)
theory, for which they later received the Nobel Prize for
in 1972.

We will look at features of superconductors before the
discovery of the BCS theory, and examine the assump-
tions and methods used to develop the theory. We will
then calculate and study interesting quantities of the su-
perconducting system, and finally describe how the re-
sults predicted by the BCS theory fare against experi-
mental evidence obtained about superconductors.

2. Before BCS Theory

2.1 Aspects of Superconductivity

Onness discovery of superconductivity came when he wit-
nessed a sudden drop in the resistance of solid mercury
at 4.2 K. All superconductors show this drop of resis-
tance, either gradually or suddenly, at a particular tran-
sition temperature, Tc. Infinite conductivity implies that
if a current were passed through the material during its
superconducting phase, the current would follow forever
without any dissipation.

Another characteristic, later found by Meissner and
Ochsenfeld (8), is that all superconductors are diamag-
nets. Diamagnetism occurs when an external magnetic
field penetrates only a finite, amount of the material, and
does not hinder the remaining inner parts of the material.
The penetration depth is usually small compared to the
width of the material. Also known as the Meissner effect,
this event also indicates that a particular magnetic field
would destroy the superconductivity of a material.

The isotope effect discovered by Maxwell and Reynolds
describes the relation between Tc and the isotopic mass

of the superconductor (7) (11). This information based
on experiments on naturally occurring mercury and its
isotope, observed a decrease in Tc with an increase in
isotopic mass. This allows for the assumption that the
basis of superconductivity relies on electron-phonon in-
teractions, an assumption that would later lead to the
formation of the BCS theory.

2.2 In search of a microscopic theory

Because superconductivity was found in materials before
the physics community predicted the phenomena, theo-
ries were formed to attempt to explain, match and pre-
dict the characteristics of these materials that undergo
the phase transition. London and London were inter-
ested in superconductivity but did not attempt to de-
scribe the reason for it. Instead, they derived an equa-
tion for the penetration depth, λ, of the superconductor
(4), but their results consistently overestimated the ex-
perimentally found values, and so their assumptions were
discarded.

The Ginzburg-Landau theory in 1950 (6), was a phe-
nomenological theory using physical intuition and the
variational principle of quantum mechanics. It allowed
the calculation of macroscopic quantities of the material
in the superconducting state if one assumed the phase
transition to be of second order. His results were able
to accurately match the experimental results of the time,
and were later shown to be a specific form of the BCS
theory. While useful and accurate for macroscopic quan-
tities, like the London-London attempt, it did not explain
the foundation for superconductivity in these materials.

3. Foundations of BCS Theory

In this section, we lay out the theoretical grounds for BCS
theory. All derivations may be referenced in “Theory of
Superconductivity” by Bardeen, Cooper, and Schrieffer
or Tinkham’s Introduction to Superconductivity.

3.1 Cooper Pairs

The BCS theory relies on the assumption that supercon-
ductivity arises when the attractive Cooper pair interac-
tion dominates over the repulsive Coulomb force (2). A
Cooper pair is a weak electron-electron bound pair medi-
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ated by a phonon interaction. Although somewhat am-
biguous, one can visualize this pairing by the following
explanation. Imagine an electron moving within a mate-
rial. The Coulomb attraction between the electron and
the positively charged cores of ions in the material will
leave a net positive charge in the vicinity. A “paired”
electron is one with opposite momentum and spin that is
attracted to this force.

This heuristic explanation is somewhat incomplete,
because at the heart of the phonon-mediated interaction
is a long range attraction and thus, requires quantum
mechanics for a full explanation. Cooper’s monumental
1956 work showed that due to the fermi statistics of the
electron, this paired e− − e− state can have energy less
than that of the Fermi-energy of the material(3). Thus,
at adequately low temperatures, when thermal energy is
not a factor, bound e− − e− states can form.

We give a short, simplified argument of for this fact.
Suppose we have two electrons interacting with this at-
tractive Cooper force with a background Fermi sea at
T = 0 by which these electrons only interact via Pauli-
exclusion. We look for a zero-momentum wave-function
of the form:

Ψ(r0, r1) =
∑
k

gke
ik·(r1−r2) (|↑↓〉 − |↓↑〉) .

Antisymmetry demands gk = g−k. Placing this in the
Schrödinger equation HΨ = EΨ yields the following con-
dition:

(E − 2εk)gk =
∑

k′>kF

Vkk′gk′

where Vkk′ = 1
vol

∫
vol
d3r V (r)ei(k−k′)·r. Now the follow-

ing mean field approximation is made:

Vkk′ =
{
−V for εF < εk < εF + ~ωc

0 else

where εF is the Fermi energy and ωc is a cutoff frequency.
This indicates that we only consider interactions that are
allowed by the metal’s frequency range, similar to the
assumptions made in the Debeye model. We then have

1
V

=
∑

k>kF

1
2εk − E

→ N0

∫ εF +~ωc

εF

dε

2ε− E

=
N0

2
ln
(

2εF − E + 2~ωc
2εF − E

)
Simplifying:

1
2~ωc

(2εF − E) =
1

e2/N0V − 1
≈ e−2/N0V

for N0V � 1. Thus, the energy of the pair satisfies

E = 2εF − 2~ωce−2/N0V < 2εF . (1)

3.2 The model

We now proceed to write down the model Hamiltonian
for the theory. This is most easily done in the language
of second quantization. Let ckσ and c†kσ to be electron
annihilation and creation operators of momentum k and
spin σ =↑ or ↓. The usual commutation relations are:

{ckσ, c†k′σ} = δ(3)(k− k′)δσσ′

and
{ckσ, ck′σ} = 0 = {c†kσ, c

†
k′σ}.

The proposed Hamiltonian is taken to be

H ′ =
∑
k,σ

εkc
†
kσckσ +

∑
k,l

Vklc
†
k↑c
†
−k↓c−l↓cl↑. (2)

The first term is the usual kinetic energy of the electrons.
The second term is the translation of the phonon me-
diated electron-electron interaction into this framework.
The matrix element Vkk′ may be taken to be general, but
we shall simplify it by using the mean field approximation
mentioned earlier in later calculations.

Now, in a normal state we would expect no formation
of Cooper pairs, hence the operator ck↑c−k↓ should aver-
age out to zero. It is then natural to define the quantity

bk = 〈ck↑c−k↓〉 .

The so-called gap energy is then defined to be

∆k = −
∑
k′

Vkk′bk′ . (3)

To allow the exchange of particles it makes sense to con-
sider the new Hamiltonian H = H ′ + µN where µ is the
chemical potential.

The Hamiltonian can be diagonalized following the
method of Bogoliubov. We defined the linearly trans-
formed states γk0 and γk1 by

ck↑ = u∗kγk0 + vkγ
†
k1

c†k↓ = −v∗kγk0 + ukγ
†
k1

such that |uk|2 + |vk|2 = 1. In practice, we can let one of
uk or vk be real. To complete the diagonaization we look
at the the Hamiltonian in this basis:

H ′ =
∑
k

{
ξk

(
(|uk|2 − |vk|2)(γ†k1γk1 + γ†−k0γ−k0)

+2|vk|2 + 2u∗kv
∗
kγ−k0γk1 + 2ukvkγ

†
k1γ
†
−k0

)
(

(∆kukv
∗
k + ∆∗ku

∗
kv
∗
k)(γ†k1γk1 + γ†−k0γ−k0 − 1)

+(∆k(vk)∗ −∆∗k(uk)∗)γ−k0γk1

+(∆∗kv
2
k −∆ku

2
k)γ†k1γ

†
−k0 +∆kb

∗
k)} .
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Figure 1: The energy gap seen between the superconduct-
ing state (top) and the normal state (bottom) produces
the order parameter of the system.

We determine the u and v terms by demanding the coef-
ficients of γ−k0γk1 and γ†k1γ

†
−k0. This is equivalent to

∆∗kvk
uk

=
√
ξ2k + |∆k|2 − ξk ≡ Ek − ξk

where
Ek ≡

√
ξ2k + |∆k|2.

From this we observe that the gap energy ∆k is the
order parameter for this interacting theory as seen in Fig.
1.

The graph also indicates with the order parameter
that the superconducting state still has energy greater
than zero with no kinetic energy, unlike the normal state.
The role of this order parameter will become even more
apparent with further calculations of thermodynamic quan-
tities.

Our objective now is to find a BCS ground state. That
is, one that the transformed Bogoliubov operators act on.
If |0〉 is the free ground state, the most general candidate
for the BCS ground state would be a wave function of the
form

|Ψ0〉 ∼
∏
k,σ

γkσ |0〉

as this state is killed by γkσ for any σ because γkσγkσ ≡ 0.
By substituting our original electron operators, this says
that the BCS ground state has the form

|BCS〉 =
∏
k

(
uk + vkc

†
k↑c
†
−k↓

)
|0〉 . (4)

Once we have this ground state, we may obtain super-
conducting excited states by

γ†k1σ1
γ†k2σ2

· · · γ†knσn
|BCS〉 .

This is analogous to the raising and lowering operators
acting on the ground state of the one-dimensional simple
harmonic oscillator.

4. Thermodynamic Calculations

4.1 Evaluating Tc

By definition of ∆k and γkσ, we have

∆k = −
∑
k′

Vkk′bk′

= −
∑
k′

Vkk′u∗kvk′

〈
1− γ†k′0γk′0 − γ†k′1γk′1

〉
.

Now, γ†k0γk0 = δ(k− k′) = γ†k′1γk′1 thus,

∆k = −
∑
k′

Vkk′u∗kvk′

〈
1− γ†k′0γk′0 − γ†k′1γk′1

〉
= −

∑
k′

Vkk′u∗k′vk′ (1− 2(f(Ek′))

= −
∑
k′

Vkk′
∆k′

2Ek′
tanh

(
βEk

2

)
=

V

2

∑
k′

∆k′

Ek′
tanh

(
βEk

2

)
.

In the last step, we have made the usual mean field ap-
proximation Vkk′ = −V . In this approximation we know
then that ∆k is independent of k. Thus, we have the
relation

1
V

=
1
2

∑
k′

tanh
(
βEk

2

)
Ek′

tanh
(
βEk

2

)
We know that generally Ek =

√
ξ2k + ∆2, and at the

transition temperature the energy gap, ∆, vanishes leav-
ing the relation: Ek = |ξk|, which is symmetric about the
Fermi energy. Then,

1
V

= 2 · 1
2

∑
k′

tanh
(
βξk
2

)
ξk′

tanh
(
βξk
2

)
→ N0

∫ εc

0

dξ
1
ξ

tanh
(
βξ

2

)
.

We will evaluate the integral from ξ = 0 to the Cooper
energy, εc = ~ωc, where the transition to superconduc-
tivity begins. Note that we expect ωc ' ωD the Debye
frequency. This is due to the dependence of the Cooper
formation having phonons exist within the material.

To compute this integral, we make the substitution
x = βξ

2 to get,

1
N0V

=
∫ βcεc/2

0

tanh(x)
x

dx.
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Figure 2: Comparing the entropy dependence on temper-
ature (12), we see that the superconducting state, Ses, is
more ordered than the normal state Sen.

We can evaluate this integral approximately,

1
N0V

≈ ln(1.13 βc~ωc)

which gives

kBTc ≈ 1.13 ~ωce−1/N0V . (5)

4.2 Entropy

A thermodynamic quantity that may be calculated is
the entropy of the system in different phases. We have
previously derived that for a Fermi gas, in this case the
free electrons of the material, the entropy Sen is propor-
tional to T . For the superconducting state with Fermi
function

fk := f(Ek) =
1

1 + eβEk

the entropy is given by

Ses = −2kB
∑
k

{(1− fk) ln(1− fk) + fk ln fk} .

Fig. 2 indicates that the superconducting phase is
more ordered compared to its normal phase (12).

5. Experimental Verification

After the theory was proposed, many experiments were
designed to test the predictions of superconductors. One
such experiment measured the temperature dependence
of the energy gap (5), with indium, tin, and lead super-
conductors as shown in Fig. 3.

The theory predicted that near Tc

∆(T )
∆(0)

≈ 1.74
(

1− T

Tc

)1/2

(a) Conventional superconductors

(b) Aluminum

Figure 3: Indication that the energy gap is temperature
dependent (5). (a) Indium, Tin and Lead may then be
considered conventional superconductors because their
properties may be predicted by BCS theory. (b) Alu-
minum deviates from the predictions of BCS, and there-
fore may not be considered a conventional superconduc-
tor.

using their mean field approximation, and the assump-
tion that the superconductors were weakly coupled. This
assumption did not hold in the case of aluminum super-
conductors as seen by Fig. 3 from the same study.

The energy gap, the order parameter of the system,
manifests itself when calculating the heat capacities of
the superconducting state and the normal state. Recall,
CV = T dS

dT . Therefore, ∆C = Ces − Cen at Tc gives

∆C = −N0

(
d∆2

dT

)∣∣∣∣
T=Tc

.

This indicates that the magnitude of the discontinuity of
the heat capacity is explicitly dependent on the order pa-
rameter ∆. This is best shown by the heat capacities of
superconducting aluminum (10) in Fig. 4. Note, Tc for
aluminum is 1.163 K.
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Figure 4: Comparison of heat capacities of superconduct-
ing and normal aluminum states (10). For the normal
state, the dependence is linear, while it is nonlinear for
the superconducting state. The order parameter of the
system can be seen clearly at Tc = 1.163 K.

6. Conclusion

BCS has given the ability to describe microscopically
what is occurring in the lattice and Fermi system, and has
been verified by many experiments. While we did not ad-
dress any of the electrodynamics of the superconducting
system, the theory does support and is agreement with
experimental findings. The flexibility of the BCS theory
has allowed for derivative theories that are dependent on
the electron-phonon interaction.

There are drawbacks of the theory, as seen by the de-
viation by the data obtained on the aluminum supercon-
ductors. The theory best approximates only conventional
weakly coupled superconductors, which aluminum can-
not be. From the publication of this theory, there have
been discoveries of high Tc superconductors (Tc > 100
K), which cannot be explained by BCS.

Many have criticized the theory for being unable to
explain the inverse isotope effect, where the Tc is inversely
proportional to the isotopic mass, and for not predicting
which materials are superconducting. While the theory
is a starting point, any deviations from its assumptions,
most notably that it is weakly coupled, would not be
supported and predict incorrect results. While the the-
ory claims to understand what causes superconductivity,
it gives no procedure in choosing which materials would
undergo the phase transition. Instead, the results could
point to what new types of interactions are occurring
within the superconducting system, and use an alterna-
tive theory to explain the onset of superconductivity.
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