Cooling Below 4.2 K

- 1. Evaporative Cooling
- 2. Dilution Refrigeration
- 3. Heat exchangers
- 4. Pomeranchuk Cooling
- 5. Adiabatic Demagnetization Refrigeration
- 6. Acoustic/Pulse Tube Refrigeration
- 7. Laser Cooling

Where is the Cooling Power?	
Define:	
Enthalpy (pure ${}^{3}\text{He}$)= H ₃	
Enthalpy (dilute phase)=H _D	
•	
Circulation rate of ³ He= n What is the cooling power of an ideal dilution refrigerator?	
•••	
A. n B. n H ₃ C. n	H _D
• •	
D. $n(H_3 - H_D)$ E. $n(H_D - H_D)$	H ₃)
$\dot{Q} = 82 n^3$	T_m^2 watts

Dilution Refrigeration Development 1965--Das, DeBruyn, & Taconis (Leiden) T= 220 mK

--Hall et al (England) T=~50

1966--Neganov (Russia) T=~50 mK 1998--Lowest recorded temperature by dilution

refrigeration is 1.7 mK (Cousins et al-Lancaster).

Can have enormous cooling power : 1μ W at 10 mK Can cool tons of matter-CERN

Can cool quickly -- few hours from room temperature

• Acoustic Impedance: $Z = \rho^* v$ ρ density, v acoustic velocity

• Transmission coefficient for phonons with perpendicular incidence:

$$t = \frac{4Z_1Z_2}{(Z_1 + Z_2)^2}$$

 \rightarrow High thermal boundary resistance Kapitza Resistance $\rm R_{K}\,{\sim}\,T^{\text{-}3}$

1971 - Superfluidity discovered in 3He (US)

Robert C. Richardson Cornell University Ithaca, NY, USA

