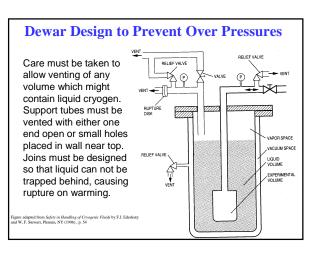
Cryogenic Safety Ch. 11 Flynn

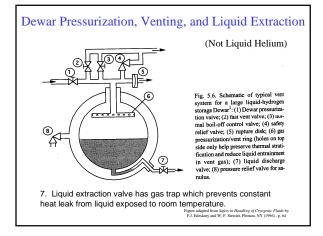
Cryogens are not high on the danger list, but a few rules must be obeyed 1. Be careful

- 2. It's cold
- 3. Don't breath
- 4. Work together
- 5. Know your materials
- 6. Let the gas go

OUTLINE

- Properties of Cryogens
 Pressurization of
- Warming Vessels 3. Dewar Safety Issues
- 4. Asphyxiation Risks
- 5. Hydrogen Combustion
- 6. Tank Fire Dangers
- 7. Safe Working Distances
- 8. Hydrogen Gas Evolution Control
 9. Thermal Contraction of
- Materials 10. Material Properties at Low T
- 11. Metals Effected by
- Embrittlement
- 12. Hydrogen Embrittlement Sources

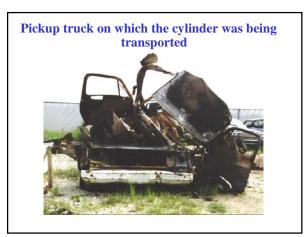

	GOALS	
Recogniz	ze cryogenic safety issues in:	
MateriaDesignOperat		
•	safe practices	

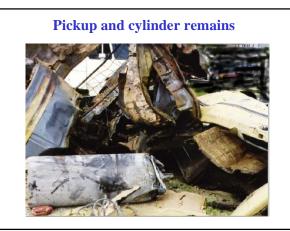

Properties of Cryogens						
Gas	Boiling Point Centigrade	Boiling Point Kelvin	Volume Expansion to Gas	Flammable	Toxic	Odor
Helium-3	-269.9	3.2	757 to 1	No	No(a)	No
Helium-4	-268.9	4.2	757 to 1	No	No(a)	No
Hydrogen	-252.7	20.4	851 to 1	Yes	No(a)	No
Deuterium	-249.5	23.6		Yes	Radioac tive	No
Tritium	-248	25.1		Yes	Radioac tive	No
Neon	-245.9	27.2	1438 to 1	No	No(a)	No
Nitrogen	-195.8	77.3	696 to 1	No	No(a)	No
Carbon monoxide	-192	81.1		Yes	Yes	No
Fluorine	-187	86	888 to 1	No	Yes	Sharp
Argon	-185.7	87.4	847 to 1	No	No(a)	No
Oxygen	-183.0	90.1	860 to 1	No	No(a)	No
Methane	-161.4	111.7	578 to 1	Yes	No(a)	No
Krypton	-151.8	121.3	700 to 1	No	No(a)	No

Maximum Pressures of Filled Vessel Warming to 300K without Venting

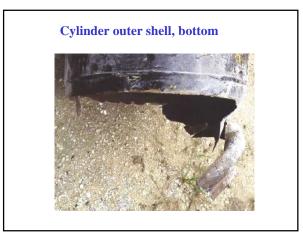
Explosion caused by improper venting or accidental rapid warming of evaporating cryogen is the single biggest safety hazard. This is because the cryogenic liquids have a much higher density than their gases at room temperature.

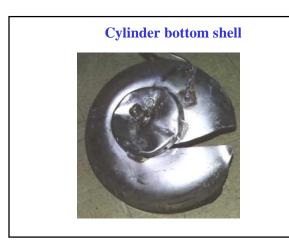
Cryogen	Maximum Pressure
	Mpa (psi)
Helium	103 (15,000)
Hydrogen	172 (25,000)
Nitrogen	296 (43,000)

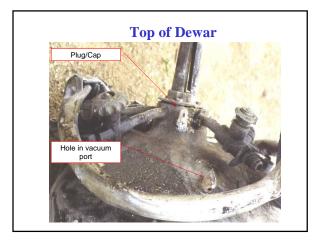


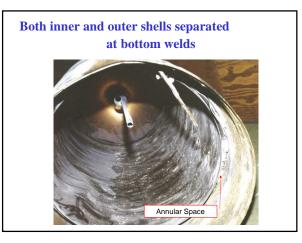

Example Mishap: Misuse of salvaged Oxygen Dewar Improper methods for using scrap dewar (cylinder) Unsafe modifications to cylinder design Personnel Involved: Two individuals (ages 42 and 60) found a liquid oxygen cylinder that had been removed from service and left at a scrap metal dealer The individuals were self-employed in scrap metal cutting operations and intended to use the cylinder in their work The individuals had access to a liquid oxygen supplier where cylinder ownership would not be questioned The incident described in the following presentation <u>did not</u> involve an Airgas company. Airgas supplied the following 19 slides.

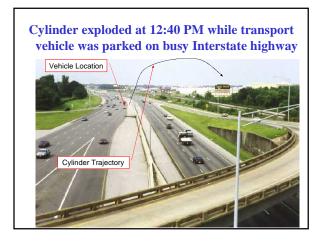
Accident Profile

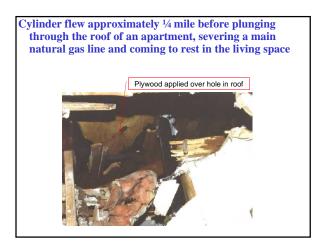

- Jury-rigging fill connections, the first attempt to fill the cylinder resulted in rapid venting through the Pressure Relief Device (PRD)
- The PRDs were removed and plugged
- · The cylinder was filled while onboard a pickup truck
- The cylinder, which had no vacuum, was now unable to vent excess pressure
- While being transported down a busy highway, the pickup truck experienced a flat tire
- Shortly thereafter, the cylinder exploded with the results shown in the following slides



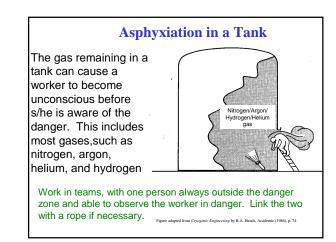


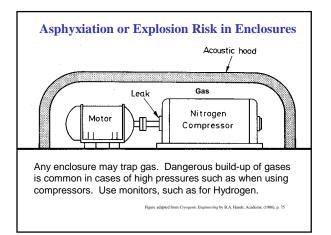


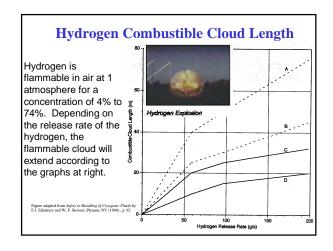


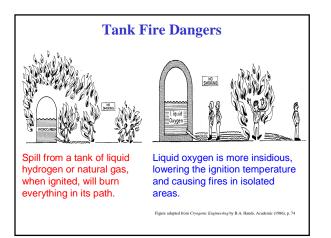


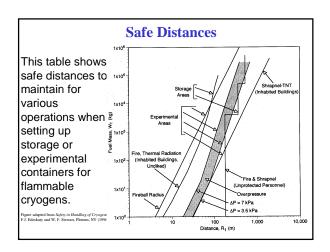


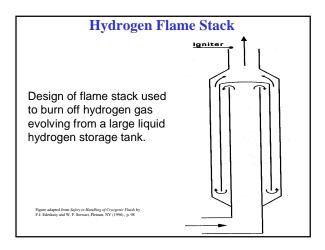


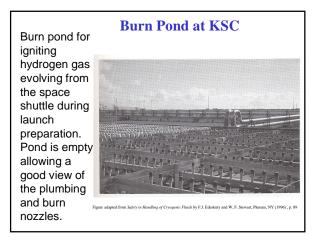


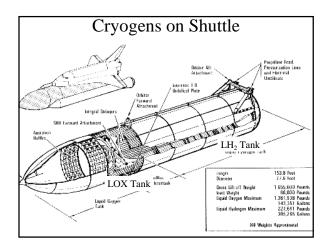


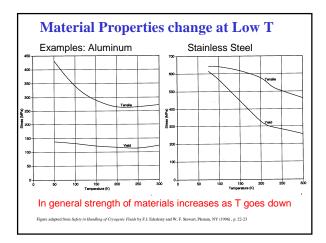


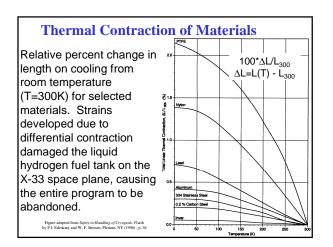

% Oxygen at 1 atm total pressure ^b	At-rest symptoms
15–19	Decreased ability to perform tasks; may induce early symptoms in persons with heart, lung, or circulatory problems
12-15	Respiration deeper, pulse faster, poor coordination
10-12	Giddiness, poor judgment, lips slightly blue
8-10	Nausea, vomiting, unconsciousness, ashen face, fainting, mental failure
68	Death in 8 min; after 6 min 50% die and 50% recover with treatment, 100% recover with treatment in 4-5 min.
4	Coma in 40 seconds, convulsions, respiration ceases, death

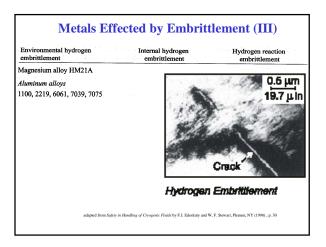




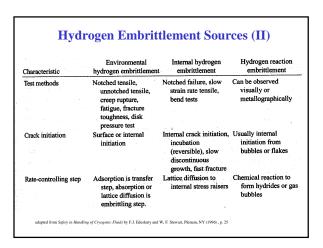








	2 categories: Become Brittle at Low Temperature:
Temperature: T	emperature:
 http://www.ider.herts.ac.uk/school/cours 	
Cu, Ag, Au, Ni, Pd, Pt, and their alloys Nickel, and their alloys	Molybdenum Niobium Zinc Most plastics


Environmental hydrogen embrittlement	Internal hydrogen embrittlement	Hydrogen reaction embrittlement
High-strength steels 18Ni maraging, 401, 440C, 430F, 403, 431, H-11, 4140, 1042 (Q&T), Fe-9Ni-4Co, 17-7 PH	High-strength steels 4340, 4140, H-11, AM355, 18Ni maraging, E8740, 17- 4PH, 17-7PH	Hydrides (MH _x) H reacts with matrix Ti, Zr, Hf, V, Nb, Ta, Mn, Ni, Pd, U, Pu, Th, rare earths
Nickel and nickel alloys	Experimental Fe-Ni-Cr alloys	Alkalis
Electroformed nickel		
Nickel (200, 270, 301)	Experimental Fe-Cu alloys	
inconel (625, 700, 706, 718, X), Rene41, Hastelloy x, Udi-		
ment 700, Waspaloy, IN100, MAR M-200DC		
Low-strength steels	Ti, Zr, V, Nb, Ta, Cr, Mo, W,	H reacts with elements in MgZr,
Armco iron, CK22, CK45,	Co, Ni, Pt, Cu, Au, Al, Mg,	MgTh alloys
1020, 1042 Nor., HY-80, HY-	and/or some of their alloys	High-pressure gas bubbles (H forms H ₂) steels
100, A-302, A-515, A-517, A- 5338, 1146a, HY-130,		101110 112) 00015
SA-105		

Metals Effected by Embrittlement (II)

Environmental hydrogen embrittlement	Internal hydrogen embrittlement	Hydrogen reaction embrittlement
<i>Titanium alloys</i> Ti-6Al-4V, Ti-5Al-2.5Sn Molybdenum-TZM	Metastable stainless steels 304L, 310	H reacts with foreign elements in matrix to form; CH4 in low-alloy steels and Ni alloys
Cobalt alloys HS-188, L-605, S-816	n an an Anna Anna Anna Anna Anna Anna An	H ₂ O in welded steels and Cu, Ni, Ag, NH ₃ in molybdenum
Metastable stainless steels	High-strength nickel alloys	
304L, 305, 310, 309S K Monel, Be-Cu alloy 25, pure	Inconel 718, Rene 41, Waspalloy, Hastelloy x	
titanium	Stable austenitic steels	
Stable stainless steels	316, A-286, U-212, 21-6-9	
316, 321, 347, A-286, Armco 21-6-9, 22-13-5		
Copper alloys, OFHC Cu		
TD-Ni, TD-NiCr	ety in Handling of Cryogenic Fluids by F.J. Edeskuty and W,	F. Stewart, Plenum, NY (1996) , p. 30

Characteristic	Environmental hydrogen embrittlement	Internal hydrogen embrittlement	Hydrogen reaction embrittlement
Usual source of hydrogen	Gaseous hydrogen	Processing, electrolysis, corrosion	Gaseous or atomic hydrogen from any source
Typical conditions	10 ⁻⁶ -10 ⁸ Pa H ₂ pressure. Most severe near room temperature. Observed from -100 °C to 700 °C. Gas purity is important. Strain rate is important.	0.1–10 ppm average H content. Most severe near room temperature. Observed from -100 °C to +100 °C. Strain rate is important.	Heat treatment or service in hydrogen usually at elevated temperatures
Test methods	Notched tensile, unnotched tensile, creep rupture, fatigue, fracture toughness, disk	Notched failure, slow strain rate tensile, bend tests	Can be observed visually or metallographically

Cryo-Disasters

- 1. Drinking LN₂
- 2. LN₂ Dewar at Texas A&M
- 3. Challenger Disaster
- 4. Apollo near-Disaster
- 5. Columbia Disaster
- 6. Vostok Disaster
- 7. X-33 space plane
- 8. CO₂
- 9. Nursing Home gas mix-up 10. LPG
- 11. Hydrogen Bomb

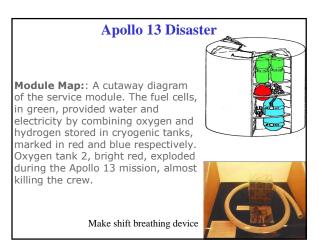
Drinking LN₂

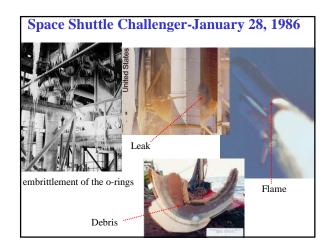
Worcester Polytechnic Institute in Massachusetts. Senior physics student, Michael Mazur, was gathering with members of the school's chapter of the Society of Physics Student for their annual "welcome back to campus" ice cream social.

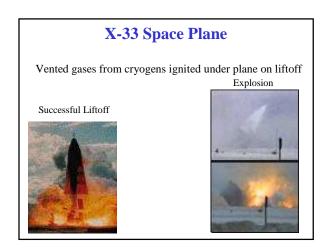
He demonstrated Leidenfrost. Then swallowed 3-4 cc of LN2

X-rays indicated that a perforation of the stomach had occurred and he was at risk of perforating his esophagus as well. He immediately was taken into surgery, where part of his stomach had to be removed.

Michael begin to breathe on his own after just a few days, sitting up within a week, and walking and eating in two weeks. Full recovery took about eight weeks.


Rupture Disk "Repair" on LN2 Dewar




Rupture disk leaking, so replace with metal plug. At 3 am tank drove through concrete floor above it and finally settled on the third floor of the Chemistry Building. It struck two 3 inch water pipes as well as the electrical wiring, flooding the first two floors. The loss of water pressure was observed on other parts of the campus. It left a twenty inch diameter hole through both floors.

Pressure from the explosion blew the doors from the hinges and the windows from their frames. The walls were found to have been driven four to eight inches from their original position.

Vostok Disaster

In 1980 Vostok-2M rocket was being fueled with LOX and kerosene at the Plesetsk Cosmodrome is Russia; an explosion tore through the launchpad incinerating the rocket and killing 48 people.

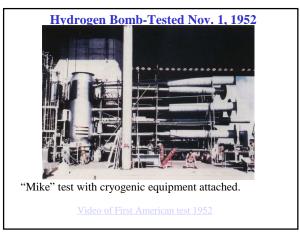
Cryogenic tank for liquefied carbon dioxide

ruptured upon closing of safety valves

Fukushima, Japan - Small leak "fixed" by blocking vent port. Pressure rise caused small rip in tank. Rapid exhaust of gas caused lowering of temperature and further rupture

The explosion proved disastrous for the steel mill, its workers, and the repair company. There were three deaths and 38 injuries resulting from the incident, as well as a vast amount of structural property damage. The explosion caused the tank to tear into at least 7 large pieces of debris which then flew up to 60 meters (197 feet) away. A factory within 50 meters (164 feet) was completely destroyed, leaving only the pillars that had supported the rest of the building. Tiles from the roof of the steel mill were scattered in a circle around the mill with a radius of up to 100 meters (328 feet) which damaged windows and doors of nearby buildings. Also, all of the houses within an incredible 500 meters (1641 feet. This is over 5 football fields away) had damage to their windows.

Nursing Home gas mix-up



The nursing home received a shipment of four portable cryogenic medical gas containers labeled as medical oxygen, but one was LN2 filled vessel (oxygen label and a nitrogen label). When the current oxygen supply began to decrease an employee was dispatched to attach a new tank to the oxygen system. The employee picked the nitrogen filled container. "The container's nitrogen-specific-gas-use-outlet connection was incompatible with the connector on the facility's oxygen supply system." The employee was initially unable to link the container to the oxygen system. Next, the employee swapped the nitrogen connection for an oxygen-specific gas-use-outlet and hooked it up, killing four residents and injuring six.

LPN-983-Buffalo

Vessel contained 230 gallons of liquid propane (LP) Fell off forklift. The explosion turned an entire residential city block into what looked like a massive war zone. Buildings were flattened and mass destruction had occurred. The explosion caused six human fatalities while 70 more people were injured. In total, 56 homes were destroyed and 102 more were damaged. Other buildings completely destroyed consisted of a church and the warehouse. Also, five large vehicles were destroyed in the explosion consisting of fire trucks and large cranes.

