Cooling Below 4.2 K
1. Evaporative Cooling
2. Dilution Refrigeration
3. Heat exchangers
4. Pomeranchuk Cooling
5. Adiabatic Demagnetization Refrigeration
6. Acoustic/Pulse Tube Refrigeration
7. Laser Cooling

Evaporative Cooling
Latent heat (also known as enthalpy change of vaporization)
Change in energy as system particle goes from liquid state to vapor state

\[\ln p_v = -\frac{\Delta H_v}{RT} + B \]

- \(p_v \) is the vapor pressure
- \(\Delta H_v \) is the heat of vaporization (kJ/mole)
- \(R \) is the gas constant
- \(T \) is the temperature (Kelvin)
- \(B \) depends on the substance

- Responsible for cooling by sweating
- Building AC
- Power Plant Cooling

Energy Distribution of Atoms in Equilibrium at Two Temperatures

Phase Diagram of H₂O

Vapor Pressure of Water
Evaporation Cryostats

Principle of Operation
Technical Realization
Cooling Power

Evaporation Cryostat-Principle of Operation

4He

Continuous Filling pot

Evaporation Cryostats

4He

Single-Shot
Continuous

4He pump
4He pump
4He return
4He return

Constriction
Impedance
4He bath at 4.2 K
4He bath at <1.3 K
4He bath at <0.3 K
Space for experiments

Pumping on Bulk Liquid

Capable of reaching temperatures of about 300mK in 3He and approx 1K in 4He.
Main disadvantage is that the amount of liquid 4He is reduced by close to 50% to reach 1 Kelvin.
Used in cascade to reach lower temperatures.

Evaporation Cryostats-Cooling Power

Clausius-Clapeyron Equation

$\frac{dp}{dT} = \frac{L}{\Delta VT}$

3He

$\dot{Q} = \dot{h} \times L \times p \times e^{-L/RT}$

$\ln p_x = -\frac{\Delta H_x}{RT} + B \quad \Rightarrow \quad p_x = p_0 e^{-\frac{\Delta H_x}{RT}}$

Minus sign in exponential implies lowering p leads to lowering T—many ways to accomplish this

- Bulk liquid: Pumping the vapor away from above the liquid, induces more liquid to vaporize, thus cooling the liquid

- Mechanical - Adsorption - Turbo molecular - Diffusion pumps

* BEC: Bose-Einstein condensates from magnetic trapping of field
Dilution Refrigeration—What an Idea!

Proposed by Heinz London in 1951 (Later at Duke University).
Enthalpy(pure 3He)<Enthalpy(dilute phase)
Like “expanding” 3He into the dilute phase—a mechanical vacuum

P 1962

Phys. Rev. 100, 324 (1955)

An experimental study has been made of the vapor pressure of solutions of helium 3He in liquid 4He at temperatures, between 5.0 and 4.2°K. A properly made tube packed with 3He perfectly saturated with a gas mixture which contains only the gas 3He is used. The mixture thus contained is then isolated from the atmosphere. The gas mixture is then slowly cooled to a temperature at which the solubility of 3He is very low. As the gas mixture is cooled, the solubility of 3He decreases and the fraction of 3He is increased.

Where is the Cooling Power?

Define:

Enthalpy (pure 3He)= H_3
Enthalpy (dilute phase)=H_D

Circulation rate of 3He = n

What is the cooling power of an ideal dilution refrigerator?

A. n
B. nH_3
C. nH_D

D. $n(H_3 - H_D)$
E. $nH_D - H_3$

$Q = 82nT^3$ watts

Dilution Refrigeration Development

1965—Das, DeBruyn, & Tacoris (Leiden)
$T = 220$ mK

—Hall et al (England) $T = 50$ mK

1966—Neganov (Russia) $T = 50$ mK

1998—Lowest recorded temperature by dilution refrigeration is 1.7 mK (Cousins et al-Lancaster).

Can have enormous cooling power: 1μW at 10 mK

Can cool tons of matter—CERN

Can cool quickly—few hours from room temperature

Remember the Phase Diagram

- 3He / 4He mixture at low temperature
- Phase separation for more than 6.5% 3He in 4He
- High phase: 100% 3He
- Higher entropy in heavy phase
- Transfer of 3He from light to heavy phase similar to evaporation

Image from: www.cern.ch
Dilution Refrigerators–Phase Separation

How many places in a standard dilution refrigerator use evaporative cooling?

A. One
B. Two
C. Three
D. Four
E. Five

Dilution Refrigerators–Building One

Dilution Refrigerator—Cooling Power

It's all Evaporative Cooling
Metal/He Thermal Boundary Resistance

- Acoustic Impedance: \(Z = p \nu \)
 - \(p \) density, \(\nu \) acoustic velocity

- \(Z_{Cu} > Z_{He} \)

- Transmission coefficient for phonons with perpendicular incidence:
 \[
 t = \frac{4Z_1Z_2}{(Z_1 + Z_2)^2}
 \]

- For Cu/He: \(t = 10^{-3} \)

 → High thermal boundary resistance
 Kapitza Resistance \(R_K \sim T^{-3} \)

Dilution Refrigerator Heat Exchangers

- Continuous Heat Exchanger
- Step Heat Exchanger

Heat Exchangers are the Key

What does the impedance do below the pot on the condensing line?

A. Slow down the helium atoms
B. Cause the required pressure drop
C. Allow the required temperature drop for condensation
D. All of the above
E. None of the above

Image from www.oichta.co

Other Parts

Where is the Cooling Power?

Define:
- Enthalpy (pure ^3He) = H_1 - Enthalpy (dilute phase) = H_D
- Circulation rate of ^3He = n

What is the cooling power of an ideal dilution refrigerator?

- A. n
- B. nH_3
- C. nH_D
- D. $n(H_3 - H_D)$
- E. $n(H_D - H_3)$

$\dot{Q} = 82nT^2$ watts

Evaporation Vs. Dilution Power

Curves are for the same ^3He Circulation rate

QUIZ: What is the approximate proportion between H_D and H_3 at 0.35 K²?

- A. $H_D = H_3$
- B. $H_D = 0.5 H_3$
- C. $H_D = 2H_3$

Pomeranchuk Cooling

- Principle of Operation
- Technical Realization
- Cooling Power

Pomeranchuk Cooling--Principle of Operation

Phase diagram of ^3He

- $\text{dp/dT} < 0$ for $T < 0.3K$
- Entropy of solid ^3He is higher than that of liquid ^3He
- Heat of solidification is negative

→ Solidifying by applying pressure adiabatically leads to reduced temperature

Pomeranchuk Cooling--Apparatus

Pomeranchuk Cooling--Power