Free particle: $(V=0)$

$$
\begin{aligned}
& \frac{-\hbar^{2}}{2 m} \frac{d^{2} u}{d r^{2}}+\frac{\hbar^{2} l(l+1)}{2 m r^{2}} u=E u \quad, R(r)=u(r) / r \\
& \frac{d^{2} u}{d r^{2}}-\frac{l(l+1)}{r^{2}} u+\frac{2 m E}{\hbar^{2}} u=0
\end{aligned}
$$

Let $k=\sqrt{\frac{2 m E}{\hbar^{2}}} \quad(E>0)$
Then $\frac{d^{2} u}{d r^{2}}-\frac{l(l+1)}{r^{2}} u+k^{2} u=0$.
Let $\rho=k r$

$$
\begin{aligned}
& \rightarrow \frac{d^{2} u}{d \rho^{2}}-\frac{l(l+1)}{\rho^{2}} u+u=0 \\
& \text { and } \frac{1}{\rho} d^{2}(\rho R)-\frac{l(l+1)}{\rho^{2}} R+R=0
\end{aligned}
$$

For $l=0$ we know the solution:

$$
\begin{aligned}
\frac{d^{2} u}{d \rho^{2}}+u=0 \rightarrow u(\rho) & =\sin (\rho), \cos (\rho) \\
& R(\rho)=\frac{\sin (\rho)}{\rho}, \frac{\cos (\rho)}{\rho}
\end{aligned}
$$

For $l \neq 0$ the solutions for R are spherical Bessel functions: (Table 4.4)

$$
\begin{array}{l|ll}
l=0 & j_{0}^{(x)}=\frac{\sin x}{x} & n_{0}(x)=-\frac{\cos (x)}{x} \\
l=1 \quad j_{1}(x)=\frac{\sin x}{x^{2}}-\frac{\cos x}{x} & n_{1}(x)=-\frac{\cos (x)}{x^{2}}-\frac{\sin x}{x} \\
& &
\end{array}
$$

The $j_{l}(x)$ will be non-singular as $x \rightarrow 0$:

$$
\begin{aligned}
& j_{f}(x) \sim x^{\ell} \quad \text { as } x \rightarrow 0 \\
& n_{l}(x) \sim \frac{1}{x^{l+1}} \quad \text { as } x \rightarrow 0
\end{aligned}
$$

Infinite spherical well:

$$
\begin{gathered}
V(r)=0 \quad r<a \\
V(r)=\infty \quad r>a \\
R(a)=0, R(r<a) \propto j_{\ell}(k a) \rightarrow j_{\ell}(k a)=0 \\
\text { with } E=\frac{\hbar^{2} k^{2}}{2 m}
\end{gathered}
$$

The zeros of the first few joe are plotted on the following page:
(1) first zero: $j_{0}(k a)=0, k a \approx 3.14$ degeneracy

$$
\begin{aligned}
& 2 \times 1=2 \\
& 2 \times 3=6 \\
& 2 \times 5=10 \\
& 2 \times 1=2 \\
& 2 \times 7=14
\end{aligned}
$$

(3) 3rd Zero: $j_{2}(k a)=0, k a \approx 5.76$
(4) 4th Zero: $j_{0}(k a)=0, k a \approx 6.28 \omega 2 \pi$
spin

First 5 Spherical Bessel Functions as Defined in Book

In the nuclear shell model one imagines filling a well like this one with nucleons (protons 2 neutrons).

When a shell is full, the nucleus is particularly stable because it requires extra energy to add another nucleon. This is analagous to why the noble gases ($\mathrm{He}, \mathrm{Ne}, \mathrm{Ar}, \ldots$) are not chemically reactive.

The number of nucleons when a filled shell occurs are the so-called magic numbers.

Shells filled	$\frac{\text { Infinite 3D well }}{2=2}$	Observed (by stability)
1	$2+6=8$	2
1,2	$2+6+10=18$	8
$1,2,3$	$2+6+10+2=20$	20
$1,2,3,4$	28	

With refinements to the potential \&including some interactions one can obtain the observer magic numbers.

