$$-\frac{h^{2}}{2m}\frac{d^{2}u}{dr^{2}}+\frac{h^{2}l(l+1)}{2mr^{2}}u=Eu,R(r)=u(r)/r$$

$$\frac{d^{2}u}{dr^{2}} - \frac{l(l+1)}{r^{2}}u + \frac{2mE}{h^{2}}u = 0$$

Let
$$k = \sqrt{\frac{2mE}{\hbar^2}}$$
 (E>0)

Then
$$\frac{d^2u}{dr^2} - \frac{l(l+1)u}{r^2} + k^2u = 0$$
.

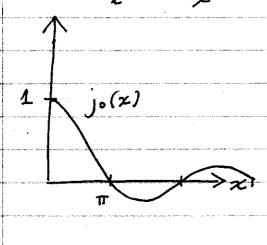
$$\frac{d^2u}{d\rho^2} - \frac{g(g+1)}{\rho^2}u + u = 0$$

and
$$\frac{1}{\rho} d^2(\rho R) - \frac{l(l+1)}{\rho^2} R + R = 0$$

For 1=0 we know the solution:

$$\frac{d^2u}{d\rho^2} + u = 0 \Rightarrow u(\rho) = \sin(\rho), \cos(\rho)$$

$$R(p) = \frac{\sin(p)}{p}, \frac{\cos(p)}{p}$$


For l ≠ 0 the solutions, are spherical Bessel functions: (Table 4.4)

$$g = 0$$
 $j_0^{(x)} = \frac{\sin x}{x}$

$$n_o(x) = -\frac{\cos(x)}{x}$$

$$\int_{1}^{\infty} |f(x)| = \frac{\sin x - \cos x}{x^2}$$

$$N_1(x) = -\frac{\cos(x)}{x^2} - \frac{\sin x}{x}$$

The je(x) will be non-singular as x >0:

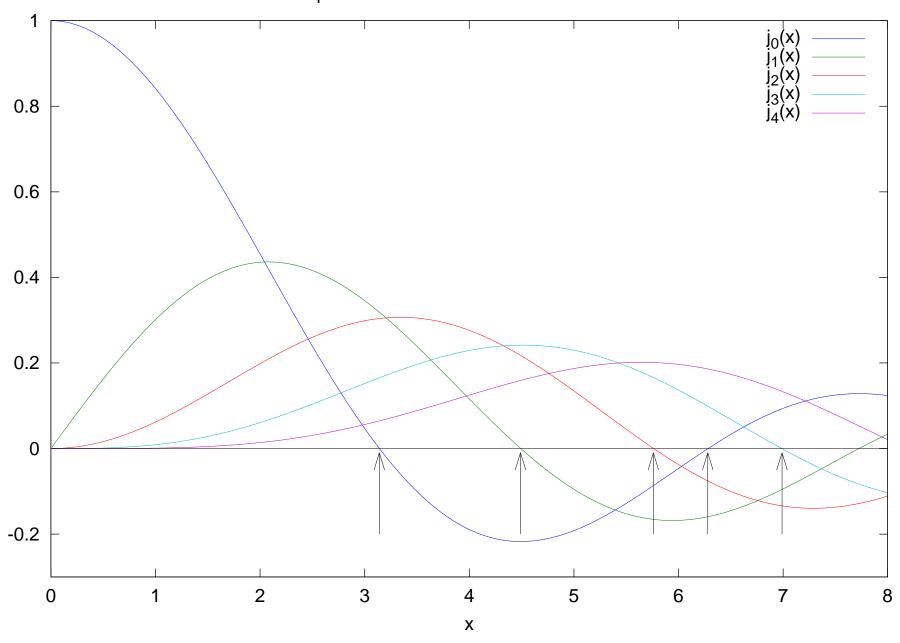
$$j_{\beta}(x) \sim x^{\beta}$$
 as $x \to 0$

$$n_{\ell}(x) \sim \frac{1}{x^{\ell+1}}$$
 as $x \to 0$

Spin

Infinite Spherical well:

$$V(r) = 0$$
 $r < a$
 $V(r) = \infty$ $r > a$


$$R(a) = 0$$
, $R(r(a) = j_{\ell}(ka) \rightarrow j_{\ell}(ka) = 0$

with
$$E = \frac{\hbar^2 k^2}{2m}$$

The zeros of the first few je are plotted on the following page:

-2,000				degeneracy
0	first zero:	io (ka) = 0	, ka≈ 3.14	2:1 = 2
_	2nd zero:	_	_	2×3 = 6
	3rd Zero:	-	_	2×5 = 10
4	4th Zero:	ia(ka) = 0	$ka \approx 6.28 a^{2\pi}$	2×1 = 2
(5)	5th Zero:	iz(ka) = 0	,ka≈ 6,99	2,7=14
	Control of the contro			4

First 5 Spherical Bessel Functions as Defined in Book

In the nuclear shell model one imagines filling a well like this one with nucleons (protons & neutrons).

When a shell is full, the nucleus is particularly stable because it requires extra energy to add another nucleon. This is analogous to why the noble gases (He, Ne, Ar,...) are not chemically reactive.

The number of nucleons when a filled shell occurs are the so-called magic numbers.

Shells fil	ad Infinite 3D well	Observed (by stability,) more tightly bound
	2 = 2	2 "ore fightly bound
1,2	2+6 = 8	8
1,2,3	2+6+10=18	20
1,2,3,4	2+6+10+2=20	28

With refinements to the potential & including some interactions one can obtain the observer magic numbers.