The Nucleus

PHY 3101 D. Acosta

Rutherford Scattering

Rutherford Model of the Atom

P^Pnn P^Pn P n P n P P P

size $(1 \text{ fm} = 10^{-15} \text{ m})$

The Neutron

- The neutron was discovered in 1932 by James Chadwick
 - α-particles accelerated in a small accelerator and collided with Be nuclei
 - Neutral, very penetrating radiation
 - Found by elastic scattering off protons in paraffin wax

- By the way, the positron (anti-electron) also was discovered in 1932 by Carl Anderson in cosmic rays
 - Anti-matter predicted by P.A.M. Dirac in his relativistic version of the Schrodinger Equation

The Periodic Table

1	IA 1 H	IIA	_	Pe	eri	0	lic	Γ	a	ble	e		IIIA	IVA	٧A	VIA	VIIA	0 2 He
2	3 Li	4 Be	of the Elements										5 B	⁶ С	7 N	。 8	9 F	10 Ne
3	11 Na	12 Mg	ШB	IVB	٧B	VIB	VIIB		— VII -		IB	IIB	13 Al	14 Si	15 P	16 S	17 CI	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 ¥	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
6	55 Cs	56 Ba	57 *La	72 Hf	73 Ta	74 ₩	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	89 +Ac	104 Rf	105 Ha	106 Sg	107 NS	108 HS	109 Mt	110 110	111 111	112 112	113 113					
*Lanthanide Series			58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu		
+ A S	ctinide eries	e	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr		

- All elements composed of just electrons, neutrons, and protons
- Elements of the same group have nearly the same chemical property
- Chemical periodicity depends on the atomic number Z
- Any other fundamental particles? Next chapter...

Nomenclature

Atoms are neutral. Number of electrons

- Ordering of Periodic Table given by

valence configuration of electrons

- Same Z, different A $^{4}_{2}$ He $^{3}_{2}$ He

- Same A, different $Z = {}^{3}_{1}H = {}^{3}_{2}He$

- Same N, different A $^{13}_{6}C$ $^{14}_{7}N$

PHY 3101 -- D. Acosta

6

equals number of protons = Z

Chemical properties depend on Z

 $A_{7}X$

Isotopes:

Isobars:

Isotones:

1/5/2005

Atomic Mass Units (u)

mass of
$${}^{12}C \equiv 12$$
 u

The atomic mass is the mass of an atomic isotope, including electrons

 $1 \text{ u} = 1.66054 \times 10^{-27} \text{ kg} = 931.49 \text{ MeV} / c^2$

 $m_p = 1.00727647 \text{ u} = 938.27 \text{ MeV} / c^2$

 $m_n = 1.00866490 \text{ u} = 939.57 \text{ MeV} / c^2$

 $m_e = 5.4858 \times 10^{-4} \text{ u} = 0.511 \text{ MeV} / c^2$

Note that mass of ${}^{12}C$ is 6 m_p + 6 m_n + 6 m_e = 12.1 u > 12.0 u

The nucleus is bound

- Binding energy is 0.1 u = 90 MeV
- It takes energy to liberate all particles
- Should not think of mass as measuring the number of particles, only the rest energy of the system:
 - Mass is a measure of inertia (a = F/m) not contents

Binding Energy

 $B = [m(\text{separate}) - m(\text{combined})] \times c^2$

- Take the mass of all particles individually, including electrons, and subtract the mass of the combined system
- A system is bound if the binding energy is positive.
- Example: Deuterium
 - Note that e⁻ mass cancels

$$B = \left[M \begin{pmatrix} 1 \\ 1 \end{pmatrix} + M \begin{pmatrix} 1 \\ 0 \end{pmatrix} - M \begin{pmatrix} 2 \\ 1 \end{pmatrix} \right] c^{2}$$

- $= [1.007825u + 1.008665u 2.014102u]c^{2}$
- $= 0.002388u \cdot 931.5 \text{ MeV} / u$
- = 2.224 MeV
- If the binding energy is negative, the system will decay. The energy released is

 $Q = [m(\text{combined}) - m(\text{separate})] \times c^2 = -B$

Atomic Binding Energies

The Coulomb potential for an electron in a hydrogen-like atom can be written in terms of the dimensionless fine structure constant

$$V(r) = \frac{-\alpha(\hbar c)Z}{r} \qquad \alpha = \frac{e^2}{4\pi\varepsilon_0\hbar c} \approx \frac{1}{137}$$

The energy levels are given by

$$E_n = -\frac{1}{2}\alpha^2 \ \mu c^2 \frac{Z^2}{n^2} \qquad \mu = \left(\frac{1}{m_e} + \frac{1}{m_N}\right)^{-1}$$

Hydrogen: $\mu = m_e \implies E_1 = -13.6 \text{ eV}$ Positronium (e⁺e⁻): $\mu = \frac{m_e}{2} \implies E_1 = -6.8 \text{ eV}$

These are the binding energies!
e.g. mass of H is less than mass of e+p

The Bohr radii are

$$r_n = \frac{\hbar}{\mu c} \frac{1}{\alpha} n^2 \implies r_1 = 0.53 \times 10^{-10} \text{ m}$$

Nuclear Binding Energies

- Consider the binding energy of the deuteron
 proton-neutron bound state
 - The binding potential is roughly similar to that of the Coulomb potential, but with a dimensionless constant characteristic of the Strong Nuclear Force rather than EM

$$V(r) = \frac{-\alpha_s(\hbar c)}{r} \qquad \alpha_s = \frac{q_s^2}{4\pi\varepsilon_0\hbar c} \approx 0.1 > 10\alpha$$

The energy levels are given by

$$E_n = -\frac{1}{2} \alpha_s^2 \ \mu c^2 \frac{1}{n^2}$$
$$\mu = \left(\frac{1}{m_p} + \frac{1}{m_n}\right)^{-1} \approx \frac{m_p}{2} = 470 \text{ MeV} \ / \ c^2$$

$$E_1 = -\frac{1}{2} (470 \text{ MeV})(0.1)^2 \approx 2.3 \text{ MeV}$$

Agrees with measured value of 2.2 MeV
1 million times larger than atomic energies!
Nuclear radius is 10,000 times smaller:
\$\$\$h\$ 1 \$_2\$\$

$$r_n = \frac{n}{\mu c} \frac{1}{\alpha_s} n^2 \implies r_1 = 4.2 \times 10^{-15} \text{ m}$$

1/5/2005

Nuclear Potential Well

- Rutherford concludes from Geiger and Marsden that the range of the Strong Nuclear Force is < 10⁻¹⁴ m
 - No deviation in the scattering rate of the highest-energy α-particles off nuclei from that predicted by electromagnetic Coulomb scattering
- Thus, the Strong Nuclear Force is shortranged, and does not extend to infinity
- To probe the size of nuclei, need higher energies than α-particles from radioactive decay
- The nuclear potential well resembles a semiinfinite potential well
- α-particles inside the nucleus must tunnel to escape! Higher rate for higher energy αparticles

Size of Nuclei

 Robert Hofstadter performs experiment at Stanford using a new linear accelerator for electrons in 1950s

$$\lambda = h / p = 2.5 \text{ fm}$$

- The proton is not a point! (Deviation of elastic scattering rate from Rutherford Scattering prediction)
- Proton and nuclei have extended charge distributions

Nobel prize in 1961

