
Statistical Analysis of Data

Exponential Decay and Poisson Processes

Poisson processes

A Poisson process is one in which occurrences are randomly distributed in time, space or some
other variable with the number of occurrences in any non-overlapping intervals statistically
independent. For example, naturally occurring gamma rays detected in a scintillation detector
are randomly distributed in time, or chocolate chips in a cookie dough are randomly distributed
in volume. For simplicity, we will limit our discussion to occurrences or “events” randomly
distributed in time.

A homogeneous Poisson process is one in which the long-term average event rate is constant.
The average rate will be denoted Γ and in any interval ∆t the expected number of events is

µ = Γ∆t (1)

A nonhomogeneous Poisson process is one in which the average rate of events changes and
so might be expressed as some function Γ(t) of time. The number of events expected in an
interval from t1 to t2 would then be the integral

µ =
∫ t2

t1
Γ(t)dt (2)

While the expected number of events µ for a given experiment need not be an integer,
the number of events n actually observed must be. Moreover, due to the randomness of the
events, n may be more or less than µ with the probability for a given n depending only on µ
and given by

P (n) = e−µ µn

n!
(3)

This is the Poisson distribution, a discrete probability distribution, with each P (n) giving the
probability for that particular n to occur.

Two Poisson distributions for µ = 1.5 and µ = 100 are shown in Fig. 1. This figure shows
the parent distributions. Real sample distributions would be expected to vary somewhat from
the parent, getting closer to the parent as the sample size N increases.

AA-Poisson 1
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Figure 1: Poisson probabilities for means of 1.5 and 100

The exponential probability density function

A better way of describing Γ is as a probability per unit time that an event will occur. That
is

dP = Γdt (4)

where dP is the differential probability that an event will occur in the infinitesimal time
interval dt. Of course, some care must be taken when translating a rate to a probability per
unit time. For example, if Γ = 10/s, it is obviously not true that the probability is 10 that an
event will occur in any particular second. However, if that same rate is expressed Γ = 0.01/ms
it is roughly true that the probability is 0.01 that an event will happen in any particular
millisecond. Eq. 4 only becomes exact in the limit of infinitesimal dt.

Equation 4 also fundamentally describes the decay process of an excited state of an atom,
nuclei, or subatomic particle. In these cases, dP = Γdt is the probability for the excited state
to decay in the next time interval dt and Γ is called the decay rate for the excited state rather
than an event rate.

Equation 4 can be shown to lead directly to the Poisson probability distribution. The first
step is to see how it leads to the exponential probability density function (pdf) giving the
probability dPe(t) that the next Poisson event (or the decay of an excited state) will occur in
the interval from t to t + dt.1

If the probability of no event (or survival of the excited state) to a time t is denoted
P (0; t), then the probability of no event (or survival) to t + dt would be the product of this
probability with the probability of no event (or no decay) in the interval dt following t. Since
the probability of an event (or decay) in this interval is Γdt, the probability of no event (or no

1Equation 4 is equivalent to dPe(0) = Γdt and must be the t = 0 limiting case for the general solution.
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decay) in this interval is 1− Γdt and thus:

P (0; t + dt) = P (0; t)(1− Γdt) (5)

Rearranging and substituting (P (0; t + dt)− P (0; t))/dt = dP (0; t)/dt gives

dP (0; t)

dt
= −ΓP (0; t) (6)

which has the general solution P (0; t) = Ae−Γt. Because we must start with no event (or no
decay) at t = 0, P (0; 0) = 1 and so A = 1 giving

P (0; t) = e−Γt (7)

Then, the differential probability dPe(t) for the next event (or decay) to occur in the interval
from t to t + dt is given by the probability of no event (or no decay) in the interval from 0
to t followed by an event (or a decay) in the next interval dt. The former has a probability
P (0; t) = e−Γt and the later has a probability Γdt. Thus

dPe(t) = Γe−Γtdt (8)

Equations 8 is a continuous probability density function (pdf). It is properly normalized,
i.e., the integral over all times from 0 to ∞ is unity as required. It also has the very reasonable
property that the expectation value for the random variable t—the time to the next event (or
to the decay)—is given by

〈t〉 =
∫ ∞

0
tΓe−Γtdt

=
1

Γ
(9)

In the case of decay, the expectation value 〈t〉, henceforth denoted τe, is called the lifetime of
the excited state. Thus, Γ and τe are equivalent ways to quantify the decay process. If the
decay rate is 1000/s, the lifetime is 0.001 s. Moreover, Eq. 8 is often expressed in terms of the
lifetime rather than the decay rate.

dPe(t) =
1

τe

e−t/τedt (10)

The probability for decay in a time τe is found by integrating Eq. 8 from 0 to τe and gives
the value 1/e. Thus, for a large sample of excited states at t = 0, the fraction 1/e of them will
have decayed by τe. The time it would take for half the sample to decay is called the halflife
τ1/2 and is easily shown to be τe ln 2.
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The Poisson probability distribution

There are several possible derivations of the Poisson probability distribution. It is often derived
as a limiting case of the binomial probability distribution. The derivation to follow relies on
Eq. 4 and begins with Eq. 7 for the probability P (0; t) that there will be no events in some
finite interval t.

Next, a recursion relation is derived for the probability, denoted P (n + 1; t), for there to
be n + 1 events in a time t, which will be based on the probability P (n; t) of one less event.
For there to be n+1 events in t, three independent events must happen in the following order
(their probabilities given in parentheses).

• There must be n events up to some point t′ in the interval from 0 to t (P (n, t′) by
definition).

• An event must occur in the infinitesimal interval from t′ to t′ + dt′ (Γdt′ by Eq. 4).

• There must be no events in the interval from t′ to t (P (0, t− t′) by definition).

The probability of n + 1 events in the interval from 0 to t would be the product of the three
probabilities above integrated over all t′ from 0 to t to take into account that the last event
may occur at any time in the interval. That is,

P (n + 1; t) =
∫ t

0
P (n; t′)Γdt′P (0; t− t′) (11)

From Eq. 7 we already have P (0; t− t′) = e−Γ(t−t′) and substituting the following definition:

P (n; t) = e−ΓtP (n; t) (12)

Eq. 11 becomes (after canceling e−Γt from both sides):

P (n + 1; t) = Γ
∫ t

0
P (n; t′)dt′ (13)

From Eqs. 7 and 12, P (0; t) = 1 and then P (1; t) can be found from an application of
Eq. 13

P (1, t) = Γ
∫ t

0
P (0, t′)dt′

= Γ
∫ t

0
dt′

= Γt (14)

Applying Eq. 13 for the next few terms

P (2, t) = Γ
∫ t

0
P (1; t′)dt′

= Γ
∫ t

0
Γt′dt′

=
Γ2t2

2
(15)
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P (3, t) = Γ
∫ t

0
P (2; t′)dt′

= Γ
∫ t

0

Γ2t′2

2
dt′

=
Γ3t3

2 · 3 (16)

The pattern clearly emerges that

P (n; t) =
(Γt)n

n!
(17)

And thus with Eq. 12, the Poisson probabilities result

P (n; t) = e−Γt (Γt)n

n!
(18)

Note that, as expected, the right side depends only on the combination µ = Γt, allowing us to
write

P (n) = e−µ µn

n!
(19)

where the implicit dependence on t (or µ) has been dropped from the notation on the left
hand side of the equation.

Although the Poisson probabilities were derived assuming a homogeneous process, they are
also correct for nonhomogeneous processes with the appropriate value of µ (Eq. 2).

Several important properties of the Poisson distribution are easily investigated. For ex-
ample, the normalization condition — that some value of n from 0 to infinity must occur —
translates to ∞∑

n=0

P (n) = 1 (20)

and is easily verified from the series expansion of the exponential function

eµ =
∞∑

n=0

µn

n!
(21)

The expected number of events is found from the following weighted average

〈n〉 =
∞∑

n=0

nP (n) (22)

and is evaluated as follows:

〈n〉 =
∞∑

n=1

ne−µ µn

n!

= µ
∞∑

n=1

e−µ µn−1

(n− 1)!

= µ
∞∑

m=0

e−µ µm

m!

= µ (23)
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In the first line, the explicit form for P (n) is used and the first term n = 0 is explicitly dropped
as it does not contribute to the sum. In the second line, the numerator’s n is canceled with
the one in the denominator’s n! and one µ is also factored out in front of the sum. In the third
line, m = n− 1 is substituted, forcing a change in the indexing from n = 1...∞ to m = 0...∞.
And in the last line, the normalization property is used.

Thus, the Poisson probability distribution gives the required result that the expectation
value (or parent average) of n is equal to µ.

We should also want to investigate the standard deviation of the Poisson distribution which
would be evaluated from the expectation value

σ2 = 〈(n− µ)2〉
= 〈n2〉 − µ2 (24)

The expectation value 〈n2〉 is evaluated as follows:

〈n2〉 =
∞∑

n=0

n2P (n)

=
∞∑

n=1

n2e−µ µn

n!

= µ
∞∑

n=1

ne−µ µn−1

(n− 1)!

= µ
∞∑

m=0

(m + 1)e−µ µm

m!

= µ

[ ∞∑

m=0

me−µ µm

m!
+

∞∑

m=0

e−µ µn

n!

]

= µ [µ + 1]

= µ2 + µ (25)

In the second line, the form for P (n) is substituted and the first term n = 0 is dropped from
the sum as it does not contribute. In the third line, one power of µ is factored out of the
sum and one n is canceled against one in the n!. The indexing and lower limit of the sum is
adjusted in the fourth line using m = n − 1. In the fifth line, the m + 1 term is separated
into two terms, which are are evaluated separately in the sixth line; the first term is just 〈m〉
and evaluates to µ by Eq. 23 and the second term evaluates to 1 based on the normalization
condition—Eq. 20.

Now combining Eq. 25 with Eq. 24 gives the result

σ2 = µ (26)

implying that the parent variance is equal to the mean, i.e., that the standard deviation is
given by σ =

√
µ.
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Counting statistics

When µ is large enough (greater than 10 or so), the Poisson probability for a given n

Pp(n) = e−µ µn

n!
(27)

is very nearly that of a Gaussian pdf having the same mean µ and standard deviation σ =
√

µ
integrated over an interval of ±1/2 about that value of n.

Pg(n) =
∫ n+1/2

n−1/2

1√
2πµ

exp

(
−(x− µ)2

2µ

)
dx (28)

To a similar accuracy the integrand can be taken as constant over the narrow interval giving
the simpler result2

Pg(n) =
1√
2πµ

exp

(
−(n− µ)2

2µ

)
(29)

Typically, the true mean µ (of the Poisson distribution from which n is a sample) is
unknown and, based on the principle of maximum likelihood, the measured value n is taken
as a best estimate of this quantity.3 The standard deviation of the distribution from which n
is a sample is, by convention, the uncertainty in this estimate. This standard deviation is

√
µ

and if the true µ is unknown and n is used in its place, the best estimate of this uncertainty
would be

√
n.

The large-n behavior of the Poisson probabilities is the basis for what is typically called
“square root statistics” or “counting statistics.” That is, that a measured count obtained from
a counting experiment can be considered to be a sample from a Gaussian distribution with a
standard deviation equal to the square root of that count.

Exponential decay

There are two experiments in our laboratory investigating decay processes. In Experiment
GA, excited 137Ba nuclei are monitored while they decay with the emission of a gamma ray. It
is the decreasing number of such gamma rays with time that is measured and compared with
the prediction of Eq. 8. For a sample of N0 nuclei at t = 0, the predicted number decaying in
the interval from t to t + dt is given by dN(t) = N0dPe(t) = N0Γe−Γtdt. If the gamma rays
emitted during the decay are detected with a probability ε, the number of detected gamma
rays dG(t) in the interval from t to t + dt is predicted to be

dG(t) = εN0Γe−Γtdt (30)

2It would be interesting to study how such different looking functions as Eqs. 27 and 29 can agree so well.
Their near equivalence (for µ = n) leads to Stirling’s formula, n! ∼ √

2πe−nnn+1/2.
3It is simple to show that using µ = n will maximize the probability Pp(n).
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Background gamma rays and detector noise pulses are expected to occur with a constant
average rate λ. Taking these into account gives

dG(t) = (εN0Γe−Γt + λ)dt. (31)

The quantity in parentheses is a nonhomogeneous Poisson rate. The lifetime for 137Ba is around
3.5 minutes and in the experiment, gamma rays are counted in 15-second intervals throughout
a 30 minutes period. The analysis consists of fitting the number of gammas detected in each
interval to the integral of Eq. 31 over the appropriate time interval and taking into account
dead time corrections.

In Experiment MU, cosmic ray muons occasionally stop in a scintillation detector and, with
a lifetime of a few µs, decay into an electron and two neutrinos.4 After an initial electronic
discrimination step, the detector produces identical logic pulses with various efficiencies (or
probabilities) for various processes. We will distinguish pulses arising under three different
conditions:

Capture pulses are produced when a muon stops in the detector.

Decay pulses are produced when the muon decays in the detector.

Non-capture pulses are produced from the passage of a muon through the detector, from
other natural background radiation, and from other processes such as detector noise.

Keep in mind that the pulses are identical. Their origin is distinguished for theoretical
purposes only—in order to build a model for their relative timing. In fact, we will further
distinguish between events in which both the capture and the decay process produce a de-
tector pulse and those in which only one of the two produces a detector pulse. Events in
which two pulses are produced will be called capture/decay events and associated variables
will be subscripted with a c. Pulses from muon events in which only one pulse occurs are
indistinguishable from and can be grouped with the non-capture pulses, all of which will be
called non-paired pulses and their associated variables will be subscripted with an n.

Capture/decay pulse pairs in our apparatus are rare—occurring at a rate Rc ≈ 0.01/s
(one pulse pair every hundred seconds or so). Non-paired pulses occur at a much higher rate
Rn ≈ 10− 100/s.

These pulses result in one of two possible experimental outcomes.

Doubles are events in which two pulses follow in rapid succession—within a short timeout
period of 20 µs or so for the muon decay experiment.

Singles are all pulses that are not doubles.

4Our theoretical model will assume a single scintillator is used rather than four scintillators as in the actual
experiment.
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The measurement and analysis of time intervals between the pulses of doubles are used to
“discover” the muon decays. To measure the interval, a high speed clock is started on any
detector pulse and it is stopped on any second pulse occurring within a 20 µs timeout period.
If a second pulse does not occur within the timeout, the clock is rearmed and ready for another
start. If a second pulse occurs within the timeout, the measured time interval is saved to a
computer. Most starts are not stopped within the timeout. These are the singles.

After every start pulse, the apparatus is “dead” to another start pulse until a stop pulse
or the timeout occurs. This dead time leads to difference between the true rate R at which
particular pulses occur and the lower rate R′ at which they would occur as start pulses. (Dead
time is relatively unimportant for the muon decay measurements, but the prime symbol will
be added to any rate when it is the rate at which start pulses occur.)

Even when a non-paired pulse starts the timer, a double may result if a second pulse—by
random chance—just happens to occur before the timeout period. Doubles having a non-
paired start pulse are considered accidentals because their time distribution can be predicted
based on the probability that two unrelated pulses just happen to follow one another closely
in time. This case is discussed next.

Non-paired start pulses can be stopped by either another non-paired pulse or the capture
pulse of a capture/decay pair. The latter would be relatively rare because capture/decay
pairs are rare, but are included for completeness. Non-paired pulses and capture/decay pulse
pairs are homogeneous Poisson events and occur at a combined rate Rn + Rc. Consequently,
the probability for the next pulse to occur between t and t + dt is given by the exponential
distribution, Eq. 8, for this combined rate.

dPsn(t) = (Rn + Rc)e
−(Rn+Rc)tdt (32)

The rate of non-capture pulses stopped in the interval from t to t + dt is then the product of
the rate of non-paired start pulses R′

n and the probability dPsn

dRsn(t) = R′
n(Rn + Rc)e

−(Rn+Rc)tdt (33)

Start pulses arising from the capture pulse of capture/decay pairs are considered next. The
theoretical muon decay model is that the decay (and its pulse) occurs with a probability per
unit time equal to the muon decay rate Γ. Again, for completeness we should also consider the
possibility that the stop pulse will be from a non-paired pulse (less likely, with a probability
per unit time Rn) or by the capture event of a different capture/decay pair (even less likely,
with a probability per unit time Rc). All three of these are Poisson processes and whichever
one comes first will stop the clock. The net probability per unit time for any of the three to
occur is their sum Γ + Rn + Rc and thus the probability dPsc that the stop pulse will occur
between t and t + dt is given by

dPsc(t) = (Γ + Rn + Rc)e
−(Γ+Rn+Rc)tdt (34)

The rate of stopped capture events in the interval from t to t + dt is then the product of the
rate of capture/decay start pulses R′

c times the probability dPsc(t)

dRsc(t) = R′
c(Γ + Rn + Rc)e

−(Γ+Rn+Rc)tdt (35)
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Finally, the total rate dRs of events with stops between t and t + dt is the sum of Eqs. 33
and 35.

dRs(t) =
[
R′

n(Rn + Rc)e
−(Rn+Rc)t + R′

c(Γ + Rn + Rc)e
−(Γ+Rn+Rc)t

]
dt (36)

The electronics sort each stop time t into bins of uniform size τ , which can be considered
to be the period of a high speed clock. The clock is started on a start event, stopped on a
stop event, and the number of clock ticks between these events determines which bin the stop
event is sorted into. A stop occurring in bin 0 (before one clock tick) would correspond to t
between 0 and one clock period τ . A stop occurring in bin 1 (after 1 clock tick has passed)
would correspond to t between τ and 2τ , etc.

Thus, the differential rate dRs(t) becomes a finite rate by integration over one clock period.
And the rate Ri of stop events in bin i becomes

Ri =
∫ (i+1)τ

iτ

[
R′

n(Rn + Rc)e
−(Rn+Rc)t + R′

c(Γ + Rn + Rc)e
−(Γ+Rn+Rc)t

]
dt (37)

The bin size or clock period in the muon decay experiment is 20 ns and small enough
that the integrand above does not change significantly over an integration period. Taking the
integrand as constant at its value at the midpoint of the interval gives

Ri =
[
R′

n(Rn + Rc)e
−(Rn+Rc)ti + R′

c(Γ + Rn + Rc)e
−(Γ+Rn+Rc)ti

]
τ (38)

where ti = (i + 1/2)τ is the midtime for the interval
Of course, the histogram bins continue filling according to the rate Ri and how long one

collects data. Thus, the product of the rate and the data collection time ∆t

µi = Ri∆t (39)

is the expected number of counts in bin i. Keep in mind that the bin filling process is
a homogeneous Poisson process and the actual counts occurring in bin i will be a Poisson
random variable for the mean µi.

For the muon experiment, there are at least two orders of magnitude between each of the
rates:

Γ À Rn À Rc (40)

Thus, to better than 1% only the largest need be kept when several are added together.
Moreover, the first exponential term, which decays at the rate Rn ≈ 10 − 100/s stays very
nearly constant throughout the 20 µs timeout period. Consequently, the dependence of µi on
ti is very nearly given by

µi = α1 + α2e
−Γti (41)

This equation will be useful in fitting the accumulated muon data to determine Γ.



Statistical Analysis of Data AA-Poisson 11

Fitting with Poisson random variables

Recall that the normal fitting procedure is to choose parameters of a fitting function F (xi)
that will minimize the chi-square:

χ2 =
N∑

i=1

(yi − F (xi))
2

σ2
i

(42)

where yi is the measured value for the point i and F (xi) is the fitted value for that point. This
least squares principle is based on the principle of maximum likelihood and the assumption
that each yi is a random variable from a Gaussian distribution of mean F (xi) and standard
deviation σi.

For a Poisson-distributed event-counting experiment, the data set is represented {ni} or
ni, i = 1...N where each ni is the measured number of events for bin i. In the fit, µi would
be the equivalent of the F (xi)

5 and ni would be the equivalent of yi. Assuming the validity
of “counting statistics,”

√
ni would be the standard deviation (the equivalent of σi) and the

probability of the entire data set would be

Pg({ni}) =
N∏

i=1

1√
2πni

exp

(−(ni − µi)
2

2ni

)
(43)

The fitting parameters appearing in µi would then be determined by maximizing Pg({ni}), or
equivalently, by minimizing the chi-square

χ2 =
N∑

i=1

(ni − µi)
2

ni

(44)

Counting statistics are not expected to be valid for low values of µ (or n). In cases where
µi is expected to be small for many points in the data set, extra care must be taken to avoid
errors in the fitting procedure. For example, if µi is around 2-3, roughly 5-15% of the time ni

will be zero. Using counting statistics and setting σi =
√

ni = 0 is obviously going to cause
problems with the fit (divide by zero error). In fact, using σi =

√
ni for any bins with just

a few events can cause systematic errors in the fitting parameters. In such cases, a modified
chi-square method could be employed using the fitting function µi instead of n for σ2

i in the
chi-square denominator.

χ2 =
N∑

i=1

(ni − µi)
2

µi

(45)

For this chi-square, special care would need to be taken to ensure that the fitting function µi

remains non-zero and positive throughout the fitting procedure. Using Eq. 45 can lessen the
systematic error, but it is not the best approach.

5For example, Eq. 41 for the muon decay experiment.
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The best approach to handling data sets with low counts is to return to the method of
maximum likelihood, using the Poisson distribution to describe the probability of each bin.
The probability of the entire data set {ni} is then given by

Pp({ni}) =
N∏

i=1

e−µi
µni

i

ni!
(46)

Noting that the chi-square of Eq. 44 can be written as:

χ2
Gauss = −2 ln Pg({ni}) + C (47)

where C is a constant, we define an effective chi-square statistic from the Poisson likelihood
in an analogous manner

χ2
Poisson = −2 ln Pp({ni})

= 2
N∑

i=1

(µi − ni ln µi + ln ni!) (48)

Then, the process of maximizing the Poisson likelihood is equivalent to minimizing the Poisson
chi-square function above.

We can simplify the Poisson chi-square expression even more. Since only µi will change
during the minimization procedure and not the data points ni, the last term in the sum can
be dropped and we need only minimize

χ2
Poisson = 2

N∑

i=1

(µi − ni ln µi) (49)

Moreover, because this effective chi-square for Poisson-distributed data was constructed
in analogy to the Gaussian chi-square (aside from a constant offset), the uncertainty in any
fitted parameter can be determined in a manner analogous to the method used for Gaussian-
distributed data. That is, while holding a single fitting parameter fixed and slightly offset
from its optimized value, all the other parameters are then reoptimized. The amount the fixed
parameter must be changed to cause the Poisson chi-square to increase by 1 is that parameter’s
uncertainty.

Because of the constant offsets, the Poisson chi-square cannot be used for evaluating the
goodness of the fit. Goodness of fit can be checked in a subsequent step by forming the reduced
chi-square statistic

χ2
ν =

1

N −M

N∑

i=1

(ni − µi)
2

µi

(50)

where M is the number of fitting parameters. If the data follow the prediction for µi, this
statistic should occur with probabilities governed by the standard reduced chi-square variable
with N −M degrees of freedom.
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Figure 2: Example data and fit for muon lifetime measurements.

Figure 2 shows fitting results for a 2-day run of the muon decay experiment. Each data
point is the number of events ni (on the vertical axis) for which the measured time between
pulses of a “double” was in a 20 ns wide interval starting at ti (on the horizontal axis). Two
fits were performed to the hypothesis of Eq. 41. One fit uses the modified chi-square Eq. 45,
and the other uses the Poisson chi-square Eq. 49. For this 2-day run, both fits give a lifetime
of 1/Γ = 1.95 ± 0.1 µs, which compares well to the known lifetime of 2.2 µs. But when data
from only one day is used and the number of bins with 0 or 1 entries increases, the Gaussian
method shows a bias toward lower lifetimes (typically 1.7 ms), whereas the Poisson method is
unaffected except for a larger statistical error. Also, notice in the figure that the two methods
disagree on the size of the constant background even for 2 days of running: 2 events per bin
for the Gaussian method, and 2.9 events per bin for the Poisson method. As a check, the
background can be accurately estimated by taking the average of ni number of events for time
intervals longer than 10 ms, where the contribution from the exponential is negligible. The
result is 2.9 entries per bin, in agreement with the Poisson method.


