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Objective

Four scintillation paddles and coincidence
techniques are used to determine the overall
flux and angular distribution of cosmic ray
muons. The muon lifetime is measured us-
ing rare events where, after passage of a muon
into a scintillator is detected, its decay is also
detected a short time later. The distribution
of the decay times provides information about
the average muon lifetime. Statistical uncer-
tainties appropriate for Poisson variables are
employed throughout the experiment.
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Introduction

Cosmic rays are high-energy particles—mostly
protons and alpha particles with a small frac-
tion of heavier nuclei and other subatomic par-
ticles such as electrons, positrons and antipro-
tons. Their origins in supernovae, quasars,
and other exotic astronomical events and how
they acquire their sometimes colossal energy
(over 1020 eV) is a topic of current research.

Cosmic ray muons are created when cos-
mic rays enter earth’s atmosphere where they

eventually collide with an air molecule and ini-
tiate a hadronic shower—a cascade of particles
(mostly pions) that may undergo further nu-
clear reactions. Neutral pions (π0) decay in
into two gamma rays with a very short life-
time less than 10−17 s, which in turn gener-
ate electromagnetic showers (e+, e−, γ) that
are not very penetrating. Charged pions (π+,
π−) that do not undergo further nuclear re-
actions will decay in-flight into muons (µ+,
µ−) and neutrinos (νµ, νµ): π+ → µ+ + νµ,
π− → µ− + νµ with a lifetime of 26 nanosec-
onds. Both the muon and its corresponding
neutrino are classified as leptons — particles
that do not participate in nuclear reactions.
The neutrinos have an extremely tiny capture
cross-section, and typically pass through the
Earth without any further interactions.

Since most cosmic rays and the nuclei
they interact with are positive, positive cos-
mic muons are more abundant than negative
muons. Studies of cosmic ray muons below
a momentum of 100 GeV/c using the Com-
pact Muon Solenoid at CERN (see reference 1)
found the ratio of positive to negative muons
to be 1.28.

Muons were discovered in cosmic rays by
C. Anderson and S.H. Neddermeyer in 1937.
There are two kinds of muon, the negative µ−

and its antimatter partner, the positive µ+.
They are essentially heavy versions of the elec-
tron and its antimatter partner, the positron,
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having the same spin and charge, but with
a mass mµ = 105.66 MeV/c2 approximately
207 times larger than the electron. Muons
are unstable — decaying into an electron or
positron and two neutrinos: µ+ → e++νe+νµ,
µ− → e− + νe + νµ with an average lifetime
τµ = 2.197µs — about 100 times longer than
that of the charged pion.

Because the muon undergoes a 3-body de-
cay, the kinetic energy of the emitted electron
or positron is not fixed but has a broad distri-
bution of values with a maximum (endpoint
energy) of 53 MeV in the rest frame of the
muon. This kind of energy spectrum is similar
to nuclear beta-decay (another 3-body decay)
where a neutron inside a nucleus decays into a
proton, an electron, and an anti-neutrino. In
fact, the neutrino’s existence was first postu-
lated to explain why electrons from beta-decay
are not emitted with a fixed energy as would
be predicted if the neutron decayed into only
a proton and electron.

Once created, the muon decay is a com-
pletely random event that does not depend on
its past history. The probability dP of de-
cay in the next infinitesimal time interval dt
is independent of how long it has lived since
creation and is given by:

dP = Γdt (1)

where the decay rate Γ is the inverse of the
lifetime: Γ = 1/τµ.

This decay process implies that the proba-
bility of a muon decay in the interval from t to
t+dt (given that the muon exists at t = 0) fol-
lows the exponential probability density func-
tion:

dPe(t) = Γe−Γtdt (2)

Here, the time t represents the time for a par-
ticular decay to occur and will be called a de-
cay time. In one part of this experiment, you
will measure a large sample of decay times and
compare with this exponential distribution.

Exercise 1 (a) Explain the difference be-
tween dP in Eq. 1 and dPe(t) in Eq. 2. (b)
Show that the expectation value for the decay
time 〈t〉— defined as the muon lifetime τµ — is
equal to 1/Γ. (c) Show that the muon “half-
life” (the time at which half of a large sam-
ple of muons will have decayed) is given by
t1/2 = τµ ln 2.

The differential flux of cosmic ray muons
(per unit time, per unit area, per unit solid
angle) at the surface of the Earth is approxi-
mately described by:

dN

dAdΩ dt
≈ I0 cosk θ (3)

where θ is the polar angle with respect to ver-
tical, k ≈ 2, and I0 ≈ 100 m−2sr−1s−1 at sea
level. I0 can vary by a few percent with lati-
tude and altitude as well as with atmospheric
temperature and pressure. There is no ex-
pected dependence on the azimuthal angle φ.
Eq. 3 is not expected to be valid for θ > 80◦

where the Earth’s curvature becomes an im-
portant consideration.

Solid angle is a three-dimensional analog of
an included angle in a two-dimensional plane.
Shown in Fig. 1, an arbitrary solid angle Ω can
be defined by the area A it would cover on a
sphere of radius R centered at the apex of the
solid angle.

Ω =
A

R2
(4)

Solid angles are expressed in the dimension-
less units of steradian, abbreviated sr.1 One
steradian is the solid angle covered by an area
of 1 m2 on a sphere with a 1 m radius. No-
tice that the solid angle for covering the entire
sphere (area 4πR2) is 4π sr.

1The units of steradian should be dropped where
inappropriate; for example, in A = ΩR2 (from Eq. 4),
the units on the left are those of area (m2) and on
the right they are solid angle times length squared
(sr m2=m2).
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Figure 1: The solid angle Ω subtended from
the origin of a sphere of radius R by an arbi-
trary area A on the sphere is Ω = A/R2.

Figure 2 shows the geometry for Eq. 3.
dN/dt ≈ I0 cosk θ dAdΩ would be the rate at
which muons pass through an area dA coming
from a polar angle θ within the solid angle dΩ.
The area dA should be considered to have its
normal along the incoming direction as shown
in Fig. 2a and thus the area orientation would
vary as θ or φ varies. Experimentally, the area
element is sometimes fixed in the horizontal
plane with the area normal oriented vertically
as in Fig. 2b. A comparison between equal ef-
fective areas in the two cases is demonstrated
in Fig. 2c with

dA = dA′ cos θ (5)

Thus, for an area element in a horizontal
plane, Eq. 3 would be

dN

dA′dΩ dt
≈ I0 cosk+1 θ (6)

where 0 ≤ θ ≤ π/2, i.e., the muons only come
from the upper half plane.

Muons lose energy as they travel through
the atmosphere and other materials. The
mean energy loss per unit length (called
the stopping power) for any charged particle
traversing a block of matter is governed by the
Bethe-Bloch equation:

dE

dx
= −Kz2Z

A

1

β2
· (7)[

1

2
ln

2mec
2β2γ2T 2

max

I2
− β2 − δ

2

]

Here β = v/c and γ = 1/
√

1− β2 are the
usual relativistic factors, Z and A are the
atomic number and mass of the medium, z is
the charge of the incident particle, Tmax is the
maximum kinetic energy that may be trans-
ferred to an electron in a collision, and K, I,
and δ are atomic factors.

A scaled version of the stopping power is
given as a function of momentum for muons
incident on copper in Fig. 3. For reasons to
be discussed shortly, the values are in units
of MeV cm2/g and must be multiplied by the
density of copper (8.94 g/cm3) to get the stop-
ping power in MeV/cm.

The general shape of this graph is common
to charged particles other than muons. At
low momentum, charged particles rapidly lose
energy as they ionize atoms in the medium
and the stopping power is high. The stopping
power decreases with increasing momentum
and approaches a minimum as the particle mo-
mentum gets into the relativistic regime. It
then increases only gradually from the mini-
mum as the particle momentum continues to
increase.

Figure 3 can also be used for materials
other than copper. The scaling principle is
that the actual energy lost (not the stopping
power) should be roughly the same for pas-
sage through different materials as long as the
product of the travel length and the density
of the material is the same — passage through
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Figure 2: Muons arrive from all overhead directions (solid angles) and their flux is described
as a number per unit time per unit area per unit solid angle. In (a) the area element is oriented
in the direction of the incoming muons. In (b) the area element is oriented vertically. (c) shows
equivalent areas for the two cases: dA = cos θdA′

one meter of a copper (with a density around
9 g/cm3) would lead to roughly the same av-
erage energy loss as passage through 9 meters
of water (which has a density of 1 g/cm3).
Consequently, to use Fig. 3 for another mate-
rial simply multiply by that material’s density
rather than copper’s.

As long as it remains small compared to the
muon kinetic energy, the actual energy loss is
then calculated as the product of the stopping
power, the material density, and the distance
traveled in the material. The calculation be-
comes more complicated if the energy loss cal-
culated this way leads to a final muon energy
where the stopping power has changed signif-
icantly. In this case, one would have to take
into account the energy loss in smaller slices
of the material and integrate.

Due to the randomness of individual scatter-
ing events, as the muon energy decreases, an-
gular scattering and variations in energy loss
increase. And, of course, at the lowest ener-
gies, the muon will ultimately stop inside the
material.

Exercise 2 Muons reaching the earth’s sur-

face have an average energy around 4 GeV
with a significant but reduced flux at both
higher and lower energies. (a) What is the
average energy loss for a 4 GeV muon pass-
ing through 1 m of air (ρ = 1.3 kg/m3)?
15 km of air? 1 cm of plastic scintillator
(ρ = 1.0 g/cm3)? (b) Roughly, what is the
largest muon momentum such that the muon
has a reasonable chance of stopping in 1 cm
of scintillator? (Hint: Where would the en-
ergy loss in one centimeter of scintillator be
of the same order of magnitude as the muon’s
initial kinetic energy?)

Without the effects of Einstein’s Special
Theory of Relativity, a muon — even if it is
moving at the speed of light — would travel
only 660 m before decaying in 2.2 µs. Very few
would survive long enough as they travel tens
of kilometers to get to the surface of the Earth.
However, because of the time dilation effect of
relativity, high-energy muons are able to travel
much farther before decaying and many reach
our detector where we can measure their flux
and angular distribution.
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Figure 3: The “scaled” stopping power for muons incident on copper as a function of mo-
mentum. The value on the vertical axis must be multiplied by the density of copper in g/cm3

to get the stopping power in MeV/cm of travel. The vertical axis can be multiplied by the
density of other materials to get the approximate stopping power for that material. Taken
from The Passage of Particles Through Matter by the Particle Data Group.

Exercise 3 For this exercise, assume that the
muons are created in a shell 15 km above the
surface of the Earth and that the Earth is ap-
proximately flat for such a shallow height. As-
sume the muons start off with a uniform angu-
lar distribution and that a polar angle depen-
dence at sea level develops due to muon de-
cay and due to the longer time of travel for
muons coming from larger polar angles. (As-
sume all muons have speeds near the speed of
light.) (a) If time dilation did not occur, what
fraction of the muons coming straight down
would reach the ground without decaying? De-
spite the small size of this fraction, the ob-
served rate at sea level might still be possible

if the creation rate in the upper atmosphere
were high enough. (b) Still assuming time di-
lation did not occur, how would this fraction
depend on θ? For example, determine the ra-
tio of the cosmic ray flux at θ = 30◦ to that
at 0◦. How does this θ-dependence differ from
that in Eq. 3?

Occasionally, a low energy muon will come
to rest in one of the scintillators where it
can then decay into an electron or a positron
and two neutrinos. Negatively charged muons
can also decay inside a nucleus of one of the
scintillator atoms. The µ− first displaces an
atomic electron in the atom and because it is
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207 times more massive, its orbit is 207 times
smaller than that of the displaced electron.
The muon wave function has significant prob-
ability inside the nucleus where capture by a
proton is possible:

µ− + A
ZX → A

Z−1X + νµ (8)

This muon reaction converts a proton into a
neutron, transmuting the nucleus and releas-
ing roughly the muon rest mass energy to the
neutrino, nucleus and atomic electrons. The
final nuclear state may also be unstable and
decay. Muon capture inside nuclei is a topic
rich in experimental and theoretical physics
which you are encouraged to explore. The net
effect is that this muon reaction rate adds to
the vacuum decay rate for the µ− and leads to
a shorter lifetime for negative muons. In high-
Z nuclei, this additional decay mode can sig-
nificantly shorten the average muon lifetime.
However, the muon capture rate scales as Z4

and in our apparatus, where the plastic scintil-
lator is largely made of carbon and hydrogen
atoms, the effect is fairly small.

Particularly when the time constants are
of similar size, fitting multi-exponential func-
tions presents difficulties that are discussed
in the literature. It turns out that the data
from our muon lifetime experiment will be well
modeled as a single exponential with an aver-
age lifetime that will be shorter than the vac-
uum value by approximately 5%.

Measurements

The first phase of the experiment is concerned
with determining the angular distribution and
overall flux of muons using four plastic scintil-
lation detectors. As shown in Fig. 4, the de-
tectors are arranged as two pairs — a top pair
and a bottom pair. The polar angle θ (from
vertical) is illustrated in the figure and is ad-
justed by rotating the detectors about a hor-

Figure 4: Geometric configuration of the four
scintillation detectors. The dotted lines show
the solid angle Ωt subtended by the top scin-
tillator from a point on the bottom scintilla-
tor. This defines the solid angle of acceptance
when the apparatus is used in the telescope
mode where muon passage through both the
top and bottom pair is measured. Not shown,
the mount for the detectors allows the polar
and azimuthal angles to be varied.

izontal axis. The azimuthal angle is adjusted
by rotating the apparatus on its casters about
a vertical axis.

The active volume of each paddle-shaped
detector is the rectangular slab called the scin-
tillator. A specially shaped optical coupler
transports light from the edge of a scintilla-
tor at one end to the face of a photomultiplier
tube (PMT) at the other end (the cylinders
in Fig. 4). Each paddle is wrapped in a light-
tight material with a highly reflective film on
the inside surface.

The scintillation material is a transparent
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plastic doped with a fluorescent dye. When
a charged particle, such as a muon, passes
through the material, it excites and ionizes
atoms in the scintillator medium with the
fluorescent molecules there to enhance the pro-
duction of photons. The decay of the ex-
cited states via spontaneous emission takes
only about ten nanoseconds and the pulse
width from the PMT is likewise of this order.
Roughly one photon is created for each 100 eV
of energy loss in the scintillator.

The two scintillators in a pair are mounted
face to face making it highly likely that a muon
passing through one will also pass through the
other. An event in which a muon passage is
detected simultaneously (within a few tens of
nanoseconds) in two scintillators is called a
“double.” For a paddle pair oriented horizon-
tally, the muon responsible for a double can
pass into any area element in the upper scin-
tillator and can be moving in almost any di-
rection from straight overhead to nearly hor-
izontally, i.e., from within the 2π steradians
of the upper hemisphere. For muons hitting
near the edges of a scintillator, the possible
muon directions leading to a double become
limited as some passage directions would not
cross into the other scintillator. If the volume
near an edge — say within the thickness of the
scintillator — is a small fraction of the total,
this effect should be small. Our paddles have
a edge fraction over 10%. Nonetheless, as a
first approximation, we will assume, in effect,
that the paddles are infinitesimally thin (have
an edge fraction of zero) when modeling cer-
tain aspects of the apparatus. Take note when
this assumption is being used and how it may
affect any conclusions. It surely would have
small systematic effects when determining the
overall muon flux.

A four-fold coincidence or “quad” event is
one in which all four scintillators detect a
muon passage simultaneously. Quads are rarer

than doubles because they occur only if the
muon comes from a small range of solid an-
gles passing through both the top and bottom
pair. As shown in Fig. 4, the top detector’s
area defines a solid angle of acceptance Ωt for
each area element on the bottom detector. De-
termining the rate of quads as you vary the
polar angle θ provides information about the
angular distribution that can be compared to
predictions based on Eq. 3.

Exercise 4 Based on an approximate integra-
tion of Eq. 3, explain why the rate of muons
passing through both detector pairs would be
predicted to be:

dN

dt
= I0 cosk θ

AtAb
R2

(9)

where the A’s are the areas of the top and bot-
tom detectors and R is the separation between
them. Hints: Assume all θ’s can be taken as
approximately the value for the center line be-
tween the detectors as shown in Fig. 4. Show
how the factor AtAb/R

2 arises from the inte-
gration over area and solid angle. The factor
can be obtained choosing to integrate over the
area of either the top or bottom detector and
using the other to define the integration over
solid angle.

You will start your investigations by setting
up the four detectors and determining their ef-
ficiencies for detecting the passage of a muon.
Photons from a muon passage are channeled
through the optical coupler onto the cathode
of the photomultiplier tube for that paddle.
Via the photoelectric effect, these photons lib-
erate electrons, which are then accelerated to
an energy around 100 eV onto the first PMT
“dynode.” Each incident electron loses its en-
ergy near the surface of the dynode and in
the process ejects around 10 electrons. Each
of these electrons is then accelerated to the
next dynode where the multiplication repeats.
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There are around 10 dynodes in the PMT —
the last of which is called the anode. The chain
of accelerations and electron ejections — called
a cascade — leads to a large pulse of charge
on the anode that raises its voltage for a few
nanoseconds before decaying away.

The pulse amplitude depends on many fac-
tors. It is typically large from a muon passage
which can induce many scintillation photons.
A thermionic electron is one that randomly
jumps out of a metal overcoming the potential
barrier associated with metal’s work function
via its thermal energy. Such electrons emitted
from the cathode or a dynode can also initiate
a cascade, but the pulse is typically smaller.
A room light photon leaking into the detec-
tor can also initiate a cascade leading to a de-
tectable pulse. All pulses not arising from a
muon will be called background pulses.

Because the pulses from the PMT vary in
size, they are called analog pulses. They
are transformed into uniformly shaped digi-
tal pulses used for computer processing by a
discriminator module. The Phillips model 730
five-channel discriminator we use has five inde-
pendent discriminators. Four are used — one
for each detector. A digital output pulse is
created only if the analog input pulse height
exceeds some user-adjustable minimum, called
the lower level threshold or LLT. The LLT is
adjusted separately for each detector to elimi-
nate the small background pulses which occur
in large numbers.

You will determine the overall muon flux at
the earth’s surface and its angular distribu-
tion. You will also determine the muon life-
time by measuring the distribution of time in-
tervals between double pulses in the same de-
tector. These are not the coincident doubles
arising from a single muon passing through
two scintillators. They are time-separated
pulses — the first occurring as a muon enters
and stops in a scintillator and the second when

the muon later decays in that same scintilla-
tor. The decay time is the interval between
these pulses and is predicted to vary randomly
according to the exponential distribution dis-
cussed in the introduction. Muon decays are
rare events occurring at a rate of about two per
minute and consequently it will take overnight
or longer runs to get suitable data. Be sure to
get one of these long runs started as soon as
possible.

Data acquisition

Four counters in a National Instruments USB-
6341 multifunction data acquisition module —
together with a LabVIEW Muon program —
process and display data about the pulses from
the four detectors.

All four counters are started simultaneously
at the beginning of a run and continually in-
crement on each pulse from a 100 MHz clock.
Thus the count in each counter at any point
in time is the same for all four counters — the
time since starting in units of 10−8 seconds (10
ns).

The logic pulses directly from the discrim-
inator do not have the correct voltage lev-
els to drive the counters and so they are
passed through a home-made, four-channel
“level adapter” before they are connected to
the corresponding counter’s gate input. As
each pulse arrives at the gate, the clock count
is latched and saved to a buffer.

The Muon program reads and saves these
clock counts or “timestamps” to a set of four
arrays — one for each detector — containing
continually increasing timestamps giving the
arrival time of each photon detected in that
channel. Thus, if a muon passes through and
“lights up” scintillators 1 and 2 simultane-
ously, then the timestamp when that hap-
pened would show up in the two corresponding
arrays.
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The timestamps do not have to be exactly
the same for the program to tag them as coin-
cident. The user can adjust the allowed time-
stamp separation for which a coincidence will
be recorded. Setting this “coincidence time”
to 0 would mean the timestamps must be ex-
actly the same. Setting it to 1 would mean
they can differ by up to 1 clock pulse (10 ns),
2 would mean 20 ns, etc. You should check
how the coincidence rate depends on the coin-
cidence time but the default value of 2 should
work well.

The output signal from the level adapter has
a sharp leading edge that reliably triggers a
timestamp reading with very little jitter (shot
to shot time differences) relative to the true
time the muon lights up the detector. How-
ever, the output signal from the level adapter
shows some significant oscillations for about
80 ns and often triggers a timestamp twice.
The software ignores these second timestamps
if they are closer than the debounce count — a
user-adjustable value in clock cycles that has
a default value of 8 producing an 80 ns “dead
time” after each pulse during which a real sec-
ond pulse would go undetected.

The software continually scans the four
timestamp arrays as they fill and finds the ear-
liest in each array. The earliest of these four is
then compared with the other three and any
within the coincidence time are noted by the
software as detectors that fired (or lit) simul-
taneously. This information is used to update
various counters as described next. The times-
tamps of the lit detectors are then deleted
from the arrays and the process repeats.

Based on the lit detectors, the software con-
structs a four bit tag with each bit, 0-3, taking
on the value of 1 or 0 depending on whether
detector, 0-3, fired or not. There are 16 values
for a 4-bit datum (called a “nibble” or hex-
adecimal digit). Here, the zero value (no de-
tectors fired) is not used. The muon program

increments exactly one of the 15 counters as-
sociated with that 4-bit tag, which can be de-
scribed follows:

Independent singles: when exactly one detec-
tor fires — an array of four integers for the
four detectors in the order 0, 1, 2 and 3.

Independent doubles: when exactly two de-
tectors fire simultaneously — an array of
six integers for the six pairs in the order
01, 02, 03, 12, 13, 23.

Independent triples: when exactly three de-
tectors fire simultaneously — an array of
four integers for the four triples in the or-
der 123, 023, 013, 012.

Quads: when all four detectors fire simulta-
neously — a single integer.

The counts above would be statistically in-
dependent Poisson random variables. They
are Poisson variables because they occur ran-
domly with a fixed probability per unit time
and they are statistically independent because
they have no counts in common.

There is a second group of counts, called
“full” counts, that can be derived from and
has a one-to-one correspondence with the “in-
dependent” group. For example, the full sin-
gles count for detector 0 is the total num-
ber of times detector 0 fired, regardless of
whether any others fired in coincidence. The
full triples count for detectors 0, 1, and 2
would by the number of times those three fired
simultaneously whether or not detector 3 also
fired. Counts in the independent group will
always be labeled with the independent qual-
ifier. Counts in the full group will not be sta-
tistically independent and will normally be re-
ferred to without a qualifier. In terms of the
counters in the independent group, they are:
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Quads: The number of times all four detec-
tors fired simultaneously — a single inte-
ger. (This is the same counter as in the
independent group.)

Triples: The number of times any three de-
tectors fired simultaneously — an array of
four integers for the four triples in the or-
der 123, 023, 013, 012. Each triples count
is the sum of the corresponding indepen-
dent triples plus the quads (because every
quad is also a triple for any combination
of detectors).

Doubles: The number of times each pair of
detectors fired simultaneously — an array
of six integers in the order 01, 02, 03, 12,
13, 23. Each doubles count is the sum
of the corresponding independent doubles
plus the appropriate two of the four in-
dependent triples (in which the double is
also included) plus the quads (because ev-
ery quad is also a double for any two de-
tectors).

Singles: The number of times each detector
fired — an array of four integers for the
four detectors in the order 0, 1, 2 and 3.
Each singles count is the sum of the cor-
responding independent singles plus three
of the six independent doubles (that in-
clude the single) plus three of the four
independent triples (that include the sin-
gle) plus the quads (which always include
any single).

The full counts are not statistically indepen-
dent because they have common counts. For
example, any two triples counts have the quad
counts in common; any two singles counts have
their corresponding doubles count in common.
The covariance between any two counters is
the variance of the common counts.

Exercise 5 Consider three independent Pois-
son random variables: n′1, n′2, and nc hav-
ing means µ′1, µ′2, and µc, respectively. Each
sample of these three variables is used to con-
struct two new variables n1 = n′1 + nc and
n2 = n′2 +nc so that n1 and n2 have nc counts
in common. Show that n1 and n2 will have
means 〈ni〉 = µi = µ′i + µc and variances
〈(ni − µi)2〉 = µi, for i = 1, 2 and a covari-
ance 〈(n1 − µ1)(n2 − µ2)〉 = µc, i.e., equal to
the common counts.

Recall that the uncertainty of any calcu-
lated quantity derived from correlated random
variables must take into account their covari-
ances in addition to their variances. Exer-
cise 5 shows that the variance of n1 and n2 is
their distribution’s mean and the covariance is
the mean of the distribution for the common
counts. Also recall that “square root statis-
tics” are appropriate when a sample from a
Poisson distribution is greater than 30 or so.
The sample value will then be close enough
to its mean to justify using that sample value
as an estimate of the variance, i.e., the uncer-
tainty is the square root of the count. The
same will be true of the covariance. If the
common counts are greater than 30 or so, their
sample value will also be a good approxima-
tion to the covariance.

Procedure

Set-up and initial measurements

1. Measure the dimensions of the scintilla-
tors and the separation distance R be-
tween the two pairs of detectors. Cal-
culate the approximate solid angle of ac-
ceptance. Calculate a rough range of θ
values for a particular orientation of the
telescope.

2. Orient the detectors vertically (θ = 0) so
that the scintillators are horizontal.
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3. Have the instructor check the cable con-
nections to the photomultipliers before
turning on the high voltage. Make sure
that the high voltage is set to NEGA-
TIVE. The operating voltage is 2000 V
for the photomultiplier tubes.

4. Examine the pulses from one of the PMTs
using the oscilloscope. Make sure to put
a 50 Ω terminator at the oscilloscope in-
put using a “tee.” Record the typical
range of pulse heights and pulse duration
(FWHM). Can you see any cable reflec-
tions in the signal after the pulse? How
does it change when the 50 Ω terminator
is removed?

5. Connect the four photomultiplier out-
puts to the bottom four channels of the
Phillips five-channel discriminator mod-
ule. (The input LEMO connector on the
top channel is a bit flaky.) Make sure the
inputs are in numerical order from the top
down (the cables are labeled 0-3) and that
the switch at the bottom is set for LED,
which stands for leading edge discrimina-
tion. In this mode, the module puts out
a short logic pulse whenever the ampli-
tude of the input pulse from the PMT is
larger than the LLT (lower level thresh-
old). This discrimination step prevents
the processing of smaller pulses, which oc-
cur in large numbers from the background
with only a small number due to a muon
event. The LLT for each of the four chan-
nels is set around 0.1 V but varies some-
what because each detector has a some-
what different response and noise level.

6. Examine the output of a discriminator us-
ing the oscilloscope. You should see logic
pulses with an amplitude of −1 V and
a width around 80 ns. Connect the dis-
criminator outputs from the top or bot-

tom pair of detectors to the two inputs of
the scope. Triggering on one, you should
see an occasional coincidence whenever a
muon travels through both detectors.

7. Connect the output of each discriminator
in numerical order to the input (LEMO
connector) of the 4-channel level adapter.
Connect the outputs (BNC connectors) of
the level adapter to the gates of the four
counters on the data acquisition module
(labeled 0-3) in numerical order.

8. Load the Muon program and hit the Lab-
VIEW run button to start it. Select a file
name where the spreadsheet-compatible
data will be saved as a text file. With the
detectors still oriented vertically (θ = 0),
collect data for a few minutes.

Detector efficiencies

Detector efficiencies are needed in order to de-
termine the true rates at which muons pass
through the scintillators from the measured
rates. A muon passage through the scintillator
sometimes does not result in a logic pulse. In
the next step, you will determine the efficiency
or probability for a detector to fire given that
a muon passed through that detector.

The best way to determine efficiencies is
to measure triples and quads over the same
time interval. Due to the detector arrange-
ment, any triple is almost certain evidence
that a muon traversed through the entire tele-
scope and must have passed through all four
scintillators. Thus, the fraction of the time
the fourth counter fires given the other three
did is the efficiency for that counter. For ex-
ample, to determine the efficiency of counter
0, you should record (over some reasonable
time interval) the full number of triples —
simultaneous counts in counters 1, 2, and 3
(N123) and the number of quads (N0123). Our
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hypothesis is that N123 is the total number
of muons that passed through scintillator 0,
whether it fired or not. Out of that many
chances, N0123 is the number of times detec-
tor 0 fired. The efficiency of the detector is
thus

ε0 =
N0123

N123

(10)

C.Q. 1 Use propagation of errors to show
that the statistical uncertainty in ε0 would then
be given by

σε0 =

√
ε0(1− ε0)

N123

(11)

To apply POE directly to Eq. 10, you will
need the variances for N0123 and N123 and
their covariance since it is nonzero. Assume
the counts are large enough to use square-root
statistics. These two variables have the quads
count in common, so that square root statistics
imply the covariance between N0123 and N123

can be taken as N0123. (a) Determine the un-
certainty in ε0, using propagation of error on
Eq. 10 including these variances and covari-
ance.

Alternatively, one can rewrite the formula
for ε0 in terms of the two independent counts:
the quads count N0123 and the independent
triples N ′123 = N123−N0123 — triples that were
not in the quads count. The efficiency formula
is then the same as Eq. 10,

ε0 =
N0123

N ′123 +N0123

(12)

but now written in terms of two independent
variables with no covariance between them. (b)
Use propagation of error for independent vari-
ables on this equation — again using square
root statistics — to show that this method
gives the same result.

(c) The efficiency could also be determined
by collecting the coincidence counts in the nu-
merator and denominator of Eq. 10 over sep-
arate but equal time intervals. In this case,

N123 and N0123 would be statistically indepen-
dent. Show that in this case the uncertainty in
ε0 would be given by

σε0 = ε0

√
1

N123

+
1

N0123

(13)

(d) Using simultaneously collected counts
for which Eq. 11 applies or independently col-
lected counts for which Eq. 13 applies, sup-
pose both gave 100 triples and 90 quads. Thus,
counter 0 has a calculated efficiency ε0 = 0.90
in both cases. Determine the uncertainty for
both cases.

(e) The efficiencies are needed to trans-
late theoretically expected rates assuming per-
fect efficiencies to actual rates. For exam-
ple, the 4-fold coincidence rate for muon pas-
sage for θ = 0 is predicted by Eq. 9 to be
R = I0AtAb/R

2. The measured rate would
then be predicted to be smaller than this by the
factor of E = ε0ε1ε2ε3. To find the uncertainty
in I0 from the uncertainty in the measured rate
then requires finding the uncertainty σE in this
product efficiency. If done directly from the
definition of E as a product of efficiencies,
one would have to take into account the covari-
ances between between each pair of efficiencies.
Alternatively, the product efficiencies could be
written in terms of independent counts and the
propagation of error without covariance terms
could be used. For example, the 2-fold effi-
ciency E = ε0ε1 (for paddles 0 and 1) is needed
to determine I0 from measured 2-fold coinci-
dences. To use propagation of error without
covariance terms, the product efficiency, say
for paddles 0 and 1, would be written in terms
of independent counts as:

E = N2
0123 (N ′123 +N0123)

−1
(N ′023 +N0123)

−1

(14)
For the 4-fold efficiency one would use

E = N4
0123 (N ′123 +N0123)

−1
(N ′023 +N0123)

−1

(N ′013 +N0123)
−1

(N ′012 +N0123)
−1

(15)
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Show that the fractional variance in the 2-fold
efficiency product E = ε0ε1 is given by

σ2
E

E2
=

(
2

N0123

− (N0123 +N ′123)
−1

− (N0123 +N ′023)
−1
)2
N0123

+ (N0123 +N ′123)
−2
N ′123

+ (N0123 +N ′023)
−2
N ′023

=
1

N2
0123

(
(2− ε0 − ε1)2N0123

+ ε20N
′
123 + ε21N

′
023

)
(16)

Similarly, show that the fractional variance of
the 4-fold efficiency product E = ε0ε1ε2ε3 is
given by

σ2
E

E2
=

1

N2
0123

(
(4− ε0 − ε1 − ε2 − ε3)2N0123

+ ε20N
′
123 + ε21N

′
023 + ε22N

′
013 + ε33N

′
012

)
(17)

9. Calculate the efficiencies of all four detec-
tors and check for agreement with the val-
ues on the LabVIEW program tab page
labeled Rates/Efficiencies. Once verified,
feel free to use this page.

10. Deduce the true integrated rate dN/dt of
cosmic ray muons crossing the top and
bottom pairs — the measured full doubles
rates divided by the product of the two
detector efficiencies. Compare the cor-
rected dN/dt obtained from the top and
bottom pair of detectors. Your compar-
isons should include a calculation of the
propagated uncertainty for each.

C.Q. 2 Use the data from a long run (with
horizontal detectors) to answer such questions
as:

What is the approximate rate at which
muons pass through a top or bottom scintil-
lator? What is the approximate rate at which

muons pass thorough both the top and bottom
scintillators? Why is one so much smaller
than the other?

What is the rate of background pulses for
each detector? You should obviously start from
the independent singles to eliminate counts
from doubles, triples or quads, but you should
also consider the possibility that independent
singles arise not only from background pulses
but also from muons passing through the top
or bottom pair of scintillators and then one of
the detectors fires but the other does not. How
big a contribution does this kind of event make
to the singles rates? What fraction of the full
singles from a detector are due to muons?

How do you account for the number of dou-
bles in non-adjacent detectors, i.e., with one
detector in the top pair and one in the bot-
tom pair? They are far rarer than doubles for
the two adjacent pairs (top or bottom). Most
are from triple or quad events. If these are
subtracted out, however, the remaining inde-
pendent doubles are even rarer. As discussed
next, some of these independent doubles are
due to random coincidences while others arise
from a muon passage.

A random double would be created, for ex-
ample, when two background pulses — one in
one detector and one in the other detector —
occur by chance within the coincidence time
∆t. As long as ∆t is short enough, background
rates of R1 and R2 lead to a random doubles
rate of R1R2∆t.2 Explain why ∆t for a coinci-
dence count of two clock cycles is 50 ns. These
random coincidences would occur for both ad-
jacent and non-adjacent detector pairs. Pro-
vide an estimate for these rates. Is it a sig-
nificant contribution to even the non-adjacent,

2The logic behind this formula is that it is the rate
in one detector, say R1, multiplied by the probability
R2∆t (which must be small compared to 1) that the
other detector pulse will occur in a time window ∆t
such as to produce a coincidence.
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independent doubles rates?
A double in non-adjacent detectors can also

arise from a muon passing through all four
scintillators. But rather than producing a quad
(if all four detectors fire) or even a triple
(if one detector does not fire), an indepen-
dent double will be created if exactly two de-
tectors do not fire. Estimated this rate from
the data. Is it a significant contribution to the
non-adjacent independent doubles rates? Are
there other contributions to this rate?

Angular distribution

Next, you will examine the quad rate for co-
incidences in all four detectors, i.e., with the
apparatus in the “telescope” mode.

11. Measure the four-fold coincidence rate as
a function of θ. Be sure to record total
counts and the acquisition time so you
will also be able to determine the uncer-
tainty in any rates.

To change θ, pull out the locking pin,
slowly rotate the telescope to the desired
setting, and then release the pin making
sure it registers back into the hole. Keep
an eye out for the HV and signal cables
to the photomultiplier tubes. Rotating
the telescope brings the cables close to
the top and bottom of the mounting rack.
Make sure they pass by cleanly. As you
rotate or move the telescope, they can get
snagged on something and damage the
PMT or its connectors.

Adjust the mounting rack so the tele-
scope points out the window (approxi-
mately east) when you are taking data for
nonzero θ-values. Take measurements at
consecutive holes of the telescope. There
is a small offset in the holes so none of
them line up perfectly vertical or hori-
zontal. Take measurements over 90◦ from

near vertical (approximately straight up
through the upper floors of the build-
ing) to near horizontal (approximately
straight out the window). For θ = 90◦,
be sure to also record the doubles
count for each paddle pair for use in
C.Q. 7. Use an acquisition time at each
angle to get uncertainties smaller than
about 10% in the quads rate. This will
require running for a longer time at larger
angles.

For a non-zero polar angle (e.g., θ = 30◦),
the telescope can be pointed out the window
or through the building components above the
lab by rotating it to points east, north, west,
or south or angles in between. While the the-
ory, as presented, does not include a depen-
dence on the azimuthal angle — φ in Fig. 2 —
a weak φ-dependence is actually expected.

C.Q. 3 (a) Why might your measurements
show a dependence of the muon flux on the az-
imuthal angle? For example, could the earth’s
magnetic field have a steering effect? Would
there need to be a difference in positive and
negative muon production to see such an ef-
fect? Should there be a measurable attenua-
tion of the muons that must go through the
upper floors of the physics building when com-
pared with those that must only go through the
window? 3 (b) What is the rough areal den-
sity of the atmosphere for a polar angle of 0◦

(straight up). What would it be at 45◦? (The
atmospheric areal density is the mass per unit
area for a column all the way to the top of the
atmosphere and should have units of kg/m2.)
It can be obtained from the atmospheric pres-
sure, (≈ 105 N/m2), the acceleration of gravity
(≈ 10 m/s2) and the polar angle.

3Luis W. Alvarez used cosmic ray muon detec-
tion as a probe to locate the inner chambers of
Egyptian pyramids. See http://www.lns.mit.edu/
fisherp/AlvarezPyramids.pdf for details.
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(c) Concrete has a mass density of about
2400 kg/m3. How thick a slab of concrete
would have the same areal density as the at-
mosphere?
(d) The two concrete slabs above the lab have
a total thickness around 25 cm. Is the build-
ing’s areal density above the lab a significant
fraction of the atmosphere’s?

12. Set the telescope polar angle to 30◦. In
the previous step, you collected quads
at this angle with the telescope pointed
east out the window. Now, collect data
at other azimuthal angles, perhaps ev-
ery 90◦— approximately north, west, and
south. Discuss your results. For exam-
ple, determine whether or not there are
any significant differences in the coinci-
dence rates at different azimuthal angles.
Make additional measurements with bet-
ter statistics or more angles, if needed.
Considering the possible effects of con-
crete in the path of the muons and muon
interactions with the Earth’s magnetic
field, does the data support/refute the
contention that there is no dependence of
the flux on the azimuthal angle. Based
on the χ2, can you conclude if a fit to a
constant flux is reasonable or not?

CHECKPOINT: Procedure should be
completed through Step 10, including the
determination of the detector efficiencies.
C.Q. 3 should be answered. An overnight
run to determine the muon lifetime should be
started. (Read ahead for instructions on this
investigation.)

Analysis of angular distribution

Make a graph of the four-fold coincidence rate
dN/dt as a function of the polar angle. Equa-
tion 9 predicts the true rate at which muons

pass through both detector pairs and must be
corrected for experimental issues. A logical
fitting function becomes:

dN

dt
= RB +R0 cosk θ (18)

where dN/dt values are the measured four-fold
coincident rates at each angle — uncorrected
for detector efficiencies. Their standard de-
viations thus depend only on the statistical
uncertainty in the counts acquired to deter-
mine them. (The uncertainty in the acqui-
sition time is very small and should not con-
tribute significantly to any rate uncertainties.)

Compared with Eq. 9, experimental issues
require adding the RB term to take into ac-
count background counts. Perform a properly
weighted fit of the raw dN/dt taking into ac-
count statistical uncertainties only and deter-
mine the best-fit values and uncertainties for
RB, R0, and k. Use the fitted R0, and its rela-
tionship to I0, detector geometry parameters,
and detector efficiencies to get an estimate of
I0 and its uncertainty. Is k or its uncertainty
affected by detector efficiencies or their uncer-
tainties?

C.Q. 4 Use the doubles rates from a long run
at θ = 0 to get another estimate of I0. You
will need to show that the true rate of muons
passing through each pair would be predicted to
be

dN

dt
= I0

2πA

k + 2
(19)

[Hint: Does Eq. 3 or Eq. 6 apply? Why?
The integration over area gives the factor A.
The differential solid angle dΩ corresponding
to differential variations in the polar and az-
imuthal angles is given by dΩ = sin θ dθ dφ.
The integration over all solid angles in the up-
per hemisphere gives the other factors.] Cor-
rect for detector efficiencies to determine I0

from each pair’s measured coincidence rate
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and compare with the I0 obtained from the fit
to the angular distribution.

C.Q. 5 How do your data support time di-
lation in Special Relativity? [Hint: compare
the fitted results with the predictions of Exer-
cise 3.]

Muon Lifetime

In this part of the experiment you will measure
the distribution of decay times for muons that
stop inside one of the scintillators. You will
measure the time difference between an ini-
tial PMT pulse created as a low-energy muon
enters and stops inside one of the scintillators
and a later pulse arising from the decay of that
muon into an electron and two neutrinos.

Energy must be conserved as the muon’s 106
MeV rest mass energy is transformed in the
decay. A small amount (0.511 MeV) goes into
the rest mass of the electron or positron cre-
ated. Much of the energy goes undetected to
the neutrino’s kinetic energy. The energy re-
lied on for detection is the kinetic energy of
the electron or positron created in the decay.
This quantity ranges up to a maximum around
53 MeV but has a broad range of values be-
low. Like a muon, the electron or positron ion-
izes atoms inside the scintillator material and
many scintillation photons are created. Be-
cause of its relatively low energy, the stopping
power in the scintillator is relatively high and
the detection probability should be as good or
better than it is for a muon passage.

The algorithm to find muons decaying in-
side a scintillator treats the top and bottom
paddle pairs independently. For each pair, the
program looks for a “start” event. A good
choice would be a double in that pair. Most
of the time, this represents a muon passing
completely through both scintillators and no
decay event will be found. Rarely but mea-
surably, however, this start event will be a low

energy muon traversing the upper scintillator
of a pair and stopping in the lower. Based on
this assumption for the start event, we should
then expect the lower scintillator to occasion-
ally light up within a few microseconds when
the stopped muon decays.

It is just about as likely that a low en-
ergy muon will stop in the upper scintillator —
never making it to the lower scintillator. Thus,
we also take a start event as an independent
single in the upper scintillator (one not in co-
incidence with a pulse in the lower scintilla-
tor). Most of the time this start event will
be a background pulse, but in rare instances
it will be a muon stopping in the upper scin-
tillator. In this case, we should then expect
the decay scintillation to occur in the upper
scintillator.

Thus, after saving the timestamp of the
start event — either a double or an indepen-
dent single in the upper scintillator, the pro-
gram switches to looking for a stop event — a
single in the lower or upper scintillator, re-
spectively, depending on the start event. If
the program finds a stop event, it saves the
timestamp for this event and starts looking
for a new start event.

The timestamp difference between the start
and stop event then increments that channel in
a 2000-bin frequency histogram. The spacing
between bins is 1 clock cycle (10 ns). That is,
if the timestamp difference is 100 clock cycles
(1 µs), channel 100 in the frequency histogram
is incremented.

If a stop event is not detected after 2000
clock pulses (20 µs), the start pulse is ignored
(no bin is incremented) and a new start pulse
is sought.

13. Set the telescope to its vertical orienta-
tion (θ = 0). Real muon decays and
random coincidences occur at around one
or two per minute. Much lower or much
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higher rates probably indicate a problem.
To get enough events for an analysis, col-
lect data for at least 24 hours, and ideally
for several days. Processed data, not the
four timestamp arrays, are saved ev-
ery 43 seconds and when you hit the stop
button. Look at this file to see the obvi-
ous pattern starting with the total time
(in seconds) followed by the 15 indepen-
dent counter values. Following the coun-
ters values there will be four side-by-side
columns giving the histogram frequencies
for time intervals associated with possi-
ble muon decays (i.e. stop pulses) in the
upper and lower paddles of the top pair
followed by two more columns for stop
pulses in the upper and lower paddles of
the bottom pair.

The interval measuring part of the software
that makes the histograms has a minimum
time that defaults to 30 clock cycles (300 ns).
It is user adjustable. If you set this minimum
to zero and collect data for a long run, your
histograms would show statistically significant
and relatively narrow spikes at times that cor-
respond to cable reflections. In fact, up to four
spikes can be observed spaced every 65 ns from
the previous one. (65 ns is the time it takes
for a pulse to reflect from the discriminator
input, reflect again at the PMT, and return
to the discriminator input where it might trig-
ger another logic pulse.) The histogram spikes
can be observed out to a time of around 270 ns
(four reflections) and render data in this range
and below corrupted by the spikes and unus-
able for analysis. Hence the 300 ns (30 clock
cycle) min time. Of course, it is difficult to
understand how a stop pulse from a fourth re-
flection could be observed in the histogram.
Why wasn’t the interval already stopped by
a logic pulse from a prior reflection? In any
case, there might be a real muon decay stop
pulse that will arrive after this time. Thus

stop pulses before the min time are ignored
and the software continues looking for a stop
pulse for the current start pulse.

Analysis of Lifetime Data

Sum all four histogram columns to get a sin-
gle histogram for a fit. Fit the decay time
histogram to a combination of an exponential
and a flat background. That is, the predicted
mean for each histogram bin i is given by:

yfit
i = A+Be−ti/τ (20)

where A, B, and τ are the fitting parameters
and ti is the time corresponding to the bin.
The justification for this fitting function can
be found in the addendum: Muon Lifetime
Measurement with a link on the course web
page for this experiment.

Consecutive histogram bins are separated
by the 10 ns clock period, which you can as-
sume is highly accurate and should not be a
factor in the error analysis for the muon life-
time. As discussed in the statistical analysis
book, to perform the fit, you can either max-
imize the Poisson log-likelihood function or,
equivalently, use iterated least squares. For
the latter technique, the chi-square is mini-
mized with respect to A, B and τ using σ2

i

fixed at the value yfit
i from the prior minimiza-

tion. The σ2
i should be updated after the fit

to the new yfit
i and fixed there for the next chi-

square minimization. Continue iterating until
the yfit

i converge. When finished, calculate the
fitting parameter covariance matrix or use the
∆χ2 = 1 rule to determine the uncertainty in
the muon lifetime.

If you set the min time below the default 30
clock cycle value, you will have to make sure
the chi-square or log-likelihood sum excludes
the first few channels which will all be zero
due to the debouncing part of the software al-
gorithm. And you should also exclude the two
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or three groups of channels near the front of
the histogram which will have frequencies well
above the predictions and are due to one or
more reflections of pulses at the ends of the
cables. They can be easily eliminated from
the fit by starting the sum just after the en-
hancement due to the last reflection. If you
used the default min time, all counts below 30
will be zero, and your sum should start after
that.

C.Q. 6 (a) How does your measurement of
the muon lifetime compare to expectations?
(b) Convert the fitted background level (param-
eter A of the fit) to a rate (by dividing by the
acquisition time) and compare it with a predic-
tion that this rate arises from random events
not associated with muon decay.

For the prediction, treat each paddle pair
separately and add the results. Recall that
for each pair, there are two possible start/stop
event pairs and each possibility adds a com-
ponent to the background rate. Only a tiny
fraction of start events will ever get a stop
event within the 20 µs limit and so the random
component rate in any bin associated with ei-
ther start/stop possibility is equal to the rate
of start events (either a full double or an in-
dependent single in the upper detector) times
the probability for a random stop event (a full
single in either the lower or upper detector, re-
spectively) to occur in the time interval associ-
ated with that bin. The probability of a random
stop event occurring in any 10 ns bin interval
is the rate of that stop event times 10 ns.

(c) Use the fit parameters B and τ (for the
histogram sum for both paddle pairs) to de-
termine the number of muons that decay in
the either scintillator of either pair. Hint:
the fitted number of counts in the exponen-
tial component of the histogram at any ti is
n(ti) = A exp(−ti/τ). Sum this quantity over

all ti by converting the sum to an integral∑
n(ti) =

1

∆t

∑
n(ti)∆t

=
1

∆t

∫
n(ti) dt (21)

where ∆t is the bin size. Use this number and
the acquisition time to calculate the rate of
muons decaying in any scintillator. Express
this rate as a fraction of the rate at which
muons pass into either scintillator pair (the
sum of the doubles rate for each pair) This
fraction is then an estimate of the probabil-
ity that a muon passing into a scintillator pair
will stop and decay in that pair.

C.Q. 7 Optional conversation question:
“How often do muons decay in your body?”
Or: “How often do positrons and electrons
annihilate one another in your body?” Both
answers will be a rate. Because roughly half
the muons (the µ+) decay into positrons
(which then find an electron to annihilate
with), the answer to the second question is half
the answer to the first. Hints: Assume your
body is a suitably-sized rectangular solid. Use
your telescope-mode doubles measurements
taken at θ = 0 (for the top rectangle) and
θ = π/2 (for the side rectangles) to determine
the rate at which muons enter through the top
and the four sides. Why don’t any enter from
the bottom rectangle? Note that at θ = π/2
the scintillator surface is vertical and muons
will pass though from either side. Thus, the
measured doubles rate in this orientation will
be twice the rate at which muons pass in from
one side only. The number which decay in
your body is some fraction of the number
that enter. To estimate this fraction use the
results of C.Q. 6c, but because the muon paths
will, on average, be longer in your body than
in a paddle pair, this fraction will be a few
times larger (a factor of five, say?) for your
body than for a paddle.
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