NMR — Coax Cable,

Impedance Matching

Experiment NA-CCIM
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Figure 1: Model of a coaxial cable terminated in
an arbitrary impedance Z.

Coaxial Cable

A lossless coax cable supports voltage and cur-
rent waves traveling in both directions along
the cable. The wave equations are easily de-
rived as the limiting case of the circuit shown
in Fig. 1 consisting of segments of parallel
capacitance (' = cdx and series inductance
L = ldx, where ¢ and £ are the cable’s capac-
itance and inductance per unit length.

The voltage drop across the inductor at
any instant satisfies v(z + dz,t) — v(z,t) =
—Ldi/dt = —fdx di/dt, giving

dv di

— = 1
dzx dt ()

while the current in the capacitor at any in-

stant satisfies i(x, t) —i(x+dx,t) = C'dv/dt =
cdzx dv/dt, giving

di dv

de  Cdi @)

Then for example, differentiating the first

with respect to x and the second with respect

to ¢t and eliminating d%i/dxzdt gives the wave
equation for v(zx,t)

v 1 0%
vvy_2Y9v 3
Ox? v Ot? 0 ()
where .
vg = 7 (4)

(Differentiation notation has been changed to
the partial derivative symbol 0 since v is a
function of z and t.) In a similarly fashion
it can be shown i(z,t) also satisfies the wave
equation.

1 0%

o2
T 0 (5)

ox?

We assume an ideal voltage source drives
one end of the cable (defined as x = 0) at an
angular frequency w and the other end of the
cable (defined as # = D, where D is the cable
length) is terminated by an impedance Z. The
steady state solution to the wave equation for
the voltage can then be expressed as the real
part of a complex voltage

U(QL’, t) e Ulej(wt+k-%‘) + ,U2€j(wt7kac)

(6)

where the wavenumber & and the frequency w
are linked by the dispersion relation

Vo= (7)

Eq. 6 represents harmonic waves of complex
amplitude v; and v, traveling in the negative
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and positive x directions. The cable charac-
teristics £ and ¢ and its length D as well as
the value of the terminating load impedance
7/ will determine the relative magnitude and
phases of v; and wve, i.e., the complex ratio
v1 /vy (also called the reflection coefficient).
This ratio determines whether the voltage will

exist as a pure standing wave (if |v1| = |va],
i.e., v1 /vy = €7%), or as a pure traveling wave
propagating from source to load (if v; = 0,

i.e., v1/ve = 0), or a combination of a stand-
ing wave and a traveling wave (otherwise).
To see how this comes about from a phasor
analysis, Fq. 6 is better expressed v(x,t) =
v(z)e’' where

v(z) = v, | vpe Ik

(8)

Then Eq. 2 di/dx = —cdv/dt = —jwcv(z)e’™?
gives i(x,t) = i(x)e?*t where i(x) satisfies

di

I (9)

= —jwc (vlejk” + vge’ﬂ”)

and has the solution

i(r) = —jwc (jikvlejk” — jikvgeﬂ”>
B (—v AT e’jk”> (10)
Ze 1 2
where
Zy—/" (11)
c

is a real constant of the cable called its char-
acteristic impedance. Typical values for 50 €2
coax cable are ¢ = 1 pf/em, £ = 250 pH/cm,
vo = 2 x 10'° em /s, and Zp = 50 €, only two
of which can be considered independent para-
meters.

The ratio v1 vz is obtained from the bound-
ary condition at the load end of the cable
x = D. At this end, the cable is terminated
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in some complex impedance Z giving

, v(D)
D 12
i) = “ (12
1 . B 1 . B
7 (—vle”S + g6 75) = 5 (vleﬂ + vge 75)
where § = kD now characterizes the cable

length D. Solving for the required ratio

U_1 o 672‘7.6 (Z— Zo)

= 13
(3)) Z+Zo ( )

Equation 13 shows that a pure standing wave
(v1/v2 = €7?) will result if and only if Z is zero,
infinite, or purely imaginary, i.e., a ground, an
open, or a pure reactance. A pure traveling
wave can result if and only if Z = 7, i.e., a
pure resistive load equal to the cable’s charac-
teristic impedance.

The impedance at the front (z = 0) end of
the cable Z;, = v(0)/i(0) becomes

v1 + U2
Zin ZO—U1+U2
1+ vy /v
Zo | ————= 14
0(1—7)1/’02) ( )

Then usingsing it in FEq. 14 gives

Z cosd + jZpsind
Zln — 40 R A
Zpcoso + jZ sind

(15)

Eq. 15 can be used to demonstrate several
special cases. For example, if Z = Z, (cable
terminated in its characteristic impedance),
Zin = Zo for any cable length. For ¢ = nrw
(cable length an integral number of half wave-
lengths), the impedance at the cable end is
transferred perfectly to the input 7, = Z.
For 6 = (n + 1/2)w (cable odd number of
1/4 wavelengths), Z, = Z§/Z. Such ca-
bles convert inductor behavior at their end,
7 = jwl, to capacitor behavior at their input

Ziyy = /jwCyog with Cog = L/Z5; or vice
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Figure 2: Cables short compared to a wavelength,
can be treated as a series inductance and parallel
capacitance in either order.

versa with L,g = C/Z5. They also convert
short circuits Z — 0 to open circuits Z;, = oo
and vice versa.

For short cables (6 <« 1), and to first order
in d Eq. 15 gives

Z + joZy

Zin = Zg 220
gy 6z

(16)
Noting that 67y = wlD = wlL and §/7Zy =
weD = wC where C' and L are the “total” ca-
ble capacitance and inductance (i.e., 1 pf and
250 pH per cm of cable), this can be rewritten

Z + jwlL
M1+ jwCZ (17)
Eq. 17 (again to first order in §) can be treated
as in either Fig. 2a or b. Of course, the approx-
imation (§ = 27 D/A) < 1 should be checked.
Note that for vg = 2 x 10'° em /s, the product
Af =200 MHz m, e.g., A =20 m at 10 MHgz,
and thus at this frequency ¢ = 0.1 for a cable
length D = 7/10 ~ 0.3 m

Impedance Matching

Our NMR coil is placed at the end of a 40 cm
coax cable for ease of placement between the
poles of the high field magnet. While the 10
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Figure 3: The tuning circuit for our NMR coil.

or so nH (40 cm cable) series inductance is
negligible compared to the ~ 1 yH NMR coil
inductance, the cable’s ¢ = 40 pF parallel
capacitance will not be negligible.

For impedance matching purposes, we will
use a series-parallel resonance (tank) circuit
as modeled in Fig. 3. The parallel capacitance
to ground C), will consists of the cable capac-
itance plus a discrete variable capacitor. The
discrete series capacitance (s is also variable.
C, and Cs must be adjusted to match the im-
pedance of the tank circuit to 50€2. That is,
the real part of Z must be 50 2 and the imag-
inary part must be zero.

The impedance Z of the series-parallel res-
onance circuit is

1,
1 Jrjwqg(j(,ul}Jr?")

7z = = i .
ijS m -+ ij +r
B 1 jwl +r
- jwCs 1 —w2LC, + jwrC,

1 —w?LC, + jwrCy, + jwCs(jwL + 1)
JjwCs(l — w2 LC, + juwrC,)
1 —w?L(Cs + Cp) + jwr(Cs + C)

= : (18)
—w?rC,C, + jwCs(l — w2 LC))

We need only solve for the real part of Z which
neatly becomes

,
(1 — w?LC,)? + w?r2C?2

R{Z} = (19)
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Figure 4: Graphical analysis of resonance equa-
tion. The parabolic curve is the left side of Eq. 20;
the down-sloping straight line is the right side.
The intersection points near w? and w3 are the
solutions.

Setting the imaginary part to zero yields the
(resonance) equation
(1 —wW?LC,) (1 — W L(Cs + Cp))
= —wWr?Cy(Cs + Cy)

(20)

The resonance equation has two roots (res-
onances). For r = 0, the resonance frequen-
cies wy and wy satisfy wiL(C, + Cs) = 1 and
wi LC, = 1.

The behavior (as a function of w?) of the left
side of the resonance equation is quadratic and
only negative in the region between the two
r = 0 resonance frequencies as shown in Fig. 4.
It reaches a minimum midway between w? and
w3 taking on the value —C,/4(Cs + C)) there
(around 0.05 for our apparatus). For finite r,
the line representing the right side of the reso-
nance equation can be expressed —w?/Q%w;wo
(where Q% = wywo L2 /7? is typically large) and
between the resonances takes on values around
1/Q?* (about 0.001 for our apparatus). Thus,
the two solutions for w? at the intersection of
the linear and quadratic terms remain near the
r = 0 resonances.

If we take the frequency w = 10%/s (f =
15 MHz) as a design parameter, and since C),
must be of the order of 100 pf (40 pf of cable
capacitance plus the adjustable discrete capac-
itor of similar size), L. will have to be designed
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around 1 pH. But once the coil is made, the
capacitors will have to be adjusted for the ac-
tual coil inductance.

We need to look at the condition R{Z} =
502 to determine how to choose C; and ), in

satisfying the resonance equation. Rewriting
Eq. 19

559 = (1= W’LC)? + WPrC? (21)
note that with r ~ 1£2, the left side is of order
1071-10"2. The second term on the right side
can be shown to be no bigger than 1/(Q? which
is expected to be of the order 1072 — 10~% and
thus can be neglected. Thus, the first term
will have to be adjusted to meet the matching
condition

roo e 2
5097(1 w*LC,)

(22)

If the resonance equation is satisfied at the
first resonance: w?*L(Cs + C,) &~ 1, then 1 —
W LC, ~ C/(Cs + C,). Using this in Eq. 22
and solving for C gives

O Oy ——

23

ie., C5 ~ 15 pf.

If the resonance equation is satisfied at the
second resonance: w? &~ 1/LC,, then 1 —
w?LC, must be obtained from the resonance
equation. The final result can be expressed

Cp
Q%\/r/50

and indicates a Cs smaller than expected stray
capacitance would be needed.

Thus, the first resonance and impedance
matching condition will be used.

The total current from the source ¢ passes
through the series capacitor and divides at the
node between the parallel capacitor and the

Cy ~ (24)
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inductor-resistor combination ¢ = i. + ¢;. The
voltage at this node is the same for both paths
and thus the capacitor current i. and inductor
current i; satisty i.Z. = i;4; where the Z’s are
each path’s impedance. Together these two
equations give

(i — i) (jw10p> —aGwLtr)  (25)

or

1
=1 26
e w2 LC, + jwrCy, (26)
and the magnitude of |i;| = \/i74; gives
12
: i
f? = ’ (27)

(1 —w?LCyp)? + w?r2C?

which from the impedance matching condition
Eq. 21 gives
itr = i?50€) (28)

and demonstrates that the input power is com-
pletely delivered to the only real load r in the
circuit.
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