NMR Addendum

Experiment NA-QT

Theory

In the Pauli representation the spin-1/2 angu-
lar momentum operator s is represented in a
cartesian basis
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where the two-by-two Pauli spin matrices are
given explicitly by
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The spin operator o is thus the spin angular
momentum operator in units of f/2.

The eigenstates of s, having eigenvalues
+h/2 (eigenstates of o, having eigenvalues

+1) are
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An arbitrary spin wavefunction ¢ is a superpo-
sition of these basis states ¥ = C'yyy + Cqp_
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where C'y and C'_ are the complex amplitudes
“c-numbers” whose squared magnitude give
the probability for observing the spin in the
spin-up (+) or spin-down (-) states. Note that
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specifies the wavefunction normalization.

It will be useful to have explicit formulas for
the expectation values of the spin components
for the wavefunction v = C ¢y + C 2, i.e.,
Eq. 6.
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where ¥* = CT9t + C* 4" is the row vector

= (o) ()
and ordinary vector and matrix multiplication
apply.

The spin manifests itself not only by its as-
sociation with angular momentum but also
through its association with the particle’s
magnetic dipole moment g which is aligned
with the angular momentum with a propor-
tionality constant ~ called the gyromagnetic
ratio
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In a constant magnetic field Hy, the Hamil-
tonian Hog is
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Defining the z-axis along Hy,
(12)
gives

Ho = —Hop -2 = —%ﬁ’yHOUZ (13)

or with wyp = vHy (the Larmor frequency)
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The eigenstates of s, — ¢, and ¢ — are

thus also eigenstates of Hy with eigenenergies
(Zeeman levels)
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Under the influence of the constant field, the
time evolution of the wave function ¢, i.e., of

the c-numbers C'. and C_, is governed by the
Schroedinger equation
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having the solution
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showing that the upper and lower compo-
nents of the wavefunction acquire phase fac-
tors e Ext/h

Using Egs. 8 to evaluate the spin com-
ponents of the time dependent wavefunction
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(Eq. 18) gives:
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The first equation shows that the z-component
is time independent and taking the time deriv-
atives of each of the other two gives
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These last two equations can be used to show
that the magnitude of the spin component in
the xy-plane is also constant and rotates in the
clockwise direction at an angular frequency wy.
This is the Larmor precession of the spin vec-
tor o.

Note that the constant-field Hamiltonian
Ho does not cause transitions between the
eigenstates (they are stationary states). But
a weak oscillating magnetic field H; superim-
posed on the static field Hg can cause transi-
tions. In an NMR spectrometer H; is pro-
duced by an alternating voltage (at an an-
gular frequency near the Larmor frequency)
applied to a solenoidal coil oriented with its
axis perpendicular to the constant field Hp.
This creates a linearly polarized magnetic field
which oscillates back and forth along the coil
axis and can be considered as the sum of two
counter-rotating circularly polarized compo-
nents each with half the amplitude of the total
oscillating field.

Formally, with the x-axis defined along the
coil axis and H; taken as varying as coswt
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with an amplitude 2H;

H, 2H, coswt x (22)

Hy[(coswt x —sinwt y)+

(coswt x + sinwt y)|

Split up this way, the first component rotates
in the same direction as the Larmor precession
and the second in the opposite direction.

We next form the Hamiltonian including
both the static and oscillating components
H = —p - (Ho + Hy). When this is put in
operator form using g = vh4/2 o, the explicit
forms for Hy (Eq. 12) and H; (Eq. 22), and
the Pauli matrices for o, the Hamiltonian be-

comes
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where wy = vH;. The first matrix arises from
the Hy field, the middle matrix arises from
the H; component rotating in the direction of
the Larmor precession, and the the last matrix
from the counter rotating component.

The time dependence of the wavefunction
Y (t) is again obtained from the Schroedinger
equation ih di/dt = H2p. The math will sim-
plify somewhat by assuming a solution of the

form )2
e (B)e
¢(t) — ( c (t>€—iwt/2 )
The explicit phase factors represent a frame
transformation rotating about the z-axis (at
the angular frequency of the H; field) in the
direction of the Larmor precession.

Differentiating () and performing the
matrix multiplications involved in the

H (23)

(24)
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Schroedinger equation leads to
e
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The first matrix arises from the Hg field and
the frame transfomation. It appears as if aris-
ing from an effective static field along the z-
axis of field strength Hy — w/7.

The frame transformation also eliminates
the time dependence of the second matrix aris-
ing from the properly rotating H; component
and makes it appear as a constant field (of
magnitude Hy) in the z-direction. The last
matrix, arising from the counter-rotating com-
ponent rotates at 2w in the rotating frame and
has little effect. The rotating-wave approxi-
mation amounts to dropping this last part of
the Hamiltonian.

Using the rotating-wave approximation, ¢
and c_ — the c-numbers in the rotating-frame
— appear to obey a Schroedinger equation for
a constant field having an x and 2z component.
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and, in fact, on resonance (w = wp) H' is en-
tirely along the z-axis. Tidying up Eq. 25
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Thus solutions to the following first order dif-
ferential equations are needed
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Eliminating c_ gives the harmonic osillator
equation for c;

SR (W + (@ —wo)’| ey =0 (28)
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having the general solution which can be writ-

ten in the form
cp(t) = A et A e 2 (29)

where

i= ol + (@ — w)’ (30)

is called the Rabi frequency. Using this in the
first of Egs. 27 and solving for ¢ gives

A+M + (w — wo) int/2
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In particular, suppose c¢;(0) = 1 and

c_(0) = 0 (spin initially aligned in =z-
direction). Equation 29 at ¢t = 0 gives
A+ A =1 (32)

and Eq. 31 gives
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Solving these equations gives
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and substituting these into Fqgs. 29 and 31
gives
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These are easily checked to satisfy the
Schroendinger equation (Eq. 27), the initial
conditions ¢, (0) = 1 and ¢_(0) = 0 and are
properly normalized. They can be expected
to describe a spin vector that precesses about
the effective total field in the rotating frame.

In the rotating frame (i.e., using ¢, and ¢_)
the component expectation values (FEgs. 8) be-
come

t wi = (w—wo)? t
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On-resonance (w = wyg, § = w) we get
(0,) = cosut (37)

showing that (o,) oscillates completely be-
tween between the extremes +£1 as ut goes
from 0 to w. If the alternating field is pulsed
on and off for an interval ¢ satisfying ut = , it
is said to be a m-pulse and on-resonance causes
a complete inversion of the spin.

Off resonance, complete inversion does not
occur (the Rabi precession axis has a z-
component and is therefore not perpendicu-
lar to the initial spin). The minimum (o) is
easily shown to still occur for a ut = w-pulse
reaching the value

1= (Aw/w)?
L+ (Aw/wq)?

(38)

(02 min =

where Aw = w—wyp is the frequency mismatch.



