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Objective

Fluorescence correlation spectroscopy de-
scribes a range of techniques that use the fluo-
rescence of diffusing molecules to measure dy-
namical properties of those molecules, includ-
ing their rate of diffusion, chemical reaction
rates, and more. You will use a basic setup
to study the diffusion of fluorescing polymer
nanospheres and fluorescing dye molecules to
calibrate the apparatus and learn about the
technique. Then, you will perform a biological
study on the opening and closing of genetically
engineered DNA hairpin loops.
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Introduction

There are many situations in biology where it
is desirable to characterize biomolecules (e.g.
proteins, nucleic acids, etc.) that are present in
very small concentrations: How many copies
of a particular molecule are present? How
quickly does it diffuse through its environ-
ment? How does it bind or interact with
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other structures or chemical species that are
present? Ideally, the experimentalist would
be able to make such measurements on the
molecules inside a living cell. While it is al-
ready difficult to imagine counting the num-
ber of copies of a particular chemical species
inside a cell, it may seem even harder to be-
lieve that important physical and chemical
properties (such as diffusion coefficients, re-
action equilibria, etc.) of these molecules can
also be measured inside the cell in a manner
that is non-destructive to both the cell and
the chemical species itself. Amazingly, all this
can be accomplished through fluorescence cor-
relation spectroscopy (FCS), a technique that
was first described by Magde, et al. in the
early 1970s and then developed and advanced
intensively by a number of physicists during
the subsequent decades. FCS is remarkable
in part because the technique explicitly as-
sumes and requires that the molecule of inter-
est is present in very small numbers. Its inven-
tion was therefore an important early step in
the development of the many single-molecule
microscopy techniques that have subsequently
transformed cell biology since the early 2000’s.
It is now widely used, with new applications
and variations being invented and reported
regularly.

The essential idea of FCS is that when a
fluorescent molecule, or fluorophore, is present
at low concentrations in a sample, the fluores-
cence signal collected from that sample is sub-
ject to random fluctuations as the molecules
diffuse into and out of the field of view. The
fewer the number of molecules present, the
larger (in a relative sense) these fluctuations
become. The fluorescence collected from a
small group of diffusing molecules looks a lot
like random noise. However, the faster those
molecules diffuse, react, or interact, the faster
the fluorescence signal will fluctuate. There-
fore, by studying the amplitude and frequency

properties of that noise, we can determine fun-
damental physical and chemical properties of
the system.

In this experiment you will use FCS to mea-
sure the concentration and diffusion constant
of fluorophores, fluorescent nanospheres, and
fluorescently-tagged DNA. The DNA is a so-
called “hairpin”, consisting of a single strand
of DNA that can bend around itself and form
a closed or end-to-end loop; FCS allows you to
characterize the rapid opening and closing of
this loop simply by observing the fluorescence
fluctuations of the DNA.

Apparatus

The experimental configuration for a basic
FCS apparatus is fairly simple. A laser beam
is brought to a sharp focus within a sample
containing a fluorophore and some of the fluo-
rescent light is collected and sent to a photon
detector. Figure 1 shows the details for our
apparatus.

Two mirrors (not shown in Fig. 1) steer the
532 nm laser beam (green rays in the figure)
into the spatial filter. The spatial filter, which
smooths the laser beam intensity profile, con-
sists of a focusing lens (L1, fl. = 40 mm),
which focuses the laser beam onto a pinhole
(P1, d = 20µm) and then a collimating lens
(L2, fl. = 60 mm) re-collimates the beam ex-
iting the pinhole.

The beam exiting L2 is steered into the
dichroic mirror (M1) using two more mirrors
(not shown in Fig. 1). The dichroic mirror re-
flects about 98% of the 532 nm laser light into
the back aperture of a microscope objective
(100×, oil immersion). The remaining laser
light (about 2%) passes through the dichroic
mirror and strikes the photodiode. The output
current from the photodiode is used to deter-
mine the incident laser power on the sample.

The microscope objective focuses the beam

October 20, 2014



Fluorescence Correlation Spectroscopy FCS - sjh, rd 3

B

A

532 nm  
laser

pinhole
P1 

P2 
pinhole

photon 
detector

L1L2

M1

F1 L3

microscope 
objective

sample

camera

removable 
mirrorphotodiode

dichroic (M1)

M2

B pinhole
P2

sample

microscope 
objective

lens 
L3

S1
S2

detector

Figure 1: (A) Optical configuration shows the
excitation laser (green rays), spatial filter (L1, P1,
L2), dichroic mirror (M1), microscope objective,
and photodiode. The objective brings the laser to
a focus within the sample. Fluorescence emission
from the sample (orange rays) is collected by the
objective and directed through a laser-blocking
filter F1 before it is focused by L3 onto the pinhole
P2 and then to the photon detector or, with the
removable mirror installed, onto the camera. (B)
The pinhole (P2) placed in the image plane allows
rays from point S1 in the sample to reach the
detector, but blocks rays arriving from S2.

to a diffraction-limited spot within the sample,
exciting the fluorescence. Fluorescent emis-
sion is at wavelengths longer than the 532 nm
laser light (orange lines in the figure) and
some of it is collected and collimated by the
objective, which directs it back toward the
dichroic mirror (M1). The dichroic transmits
the longer wavelength light into a mirror (M2)
which steers it toward a laser-blocking (long-
pass) filter (F1) and a converging lens (L3,
fl. = 200 mm). This lens refocuses the light
onto the second pinhole (P2, d = 75µm) af-
ter which is a photomultiplier tube (PMT) for
detecting individual photons getting through

the pinhole.

A removable mirror can be placed in front of
P2 to divert the light onto a color CCD camera
that can be used for imaging the sample area.
These images can be used to determine the
magnification and for other diagnostics.

In addition to the fluorescent light from the
excitation volume, a fraction of the incident
laser light is reflected from the sample (or
from the microscope slide holding the sam-
ple) and is also collected by the objective.
The reflected laser light must be attenuated
or it would swamp the smaller intensity of the
fluorescence. As it passes back through the
dichroic mirror, roughly 98% of the 532 nm
laser is reflected back toward the source, while
most of the longer-wavelength fluorescent light
is transmitted through to the detector. The
longpass filter (F1 in Fig. 1) is needed to re-
move any residual laser light transmitted by
the dichroic.

The photon detector module (Hamamatsu,
H10682-110) contains a photomultiplier tube
(PMT), high voltage power supply, and pulse
processing electronics. Inside the PMT a light-
sensitive photocathode emits an electron when
struck by a visible light photon. The emitted
electron is accelerated by a high voltage into
a second electrode where 5-10 electrons are
ejected and likewise accelerated into a third
electrode. Charge multiplication—each time
by a factor of 5-10—continues via a cascade of
collisions with an additional 10-12 electrodes
(dynodes) to produce a burst of 106-108 elec-
trons on the final electrode (anode). For each
incident photon, the module converts this an-
ode charge into a single output voltage pulse
with an amplitude of 2 V and a width of 20 ns.
The frequency or rate of these pulses as a func-
tion of time will be denoted R(t) in the theory.

A key principle in FCS experimental design
is the need to minimize both the excitation
volume and the detection volume and to get
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the best possible overlap between them. The
detection volume is the region within the sam-
ple from which emitted light can reach the de-
tector. The excitation volume is the region
within the sample, centered on the laser focal
spot, where the laser intensity is largest. If the
detection volume is too large, the PMT will,
in effect, detect the spatially-averaged con-
centration of fluorophores, rather than the lo-
cally fluctuating concentration. Fluctuations
in the detected light will be minimal and it
will not be possible to perform the analysis. If
the excitation volume is much larger than the
detection volume, diffusing fluorophores will
have been in the laser beam for some time be-
fore getting into the detection volume. This
pre-illumination has several unwanted effects
on the excitation-fluorescence process once the
fluorophores enter the detection region. If the
excitation and detection volume do not over-
lap well, many of the fluorescence photons will
go undetected and the signal will be weak.
Therefore, to generate a strong fluctuation sig-
nal, the laser excitation should be restricted to
the smallest possible volume within the sam-
ple, and the detector’s field of view must be
limited so that only photons from that small
volume are detected efficiently.

After excitation by the laser and subsequent
fluorescent emission, the fluorophore is ready
for another round of excitation-fluorescence.
When illuminated with a laser, typical fluo-
rophores fluoresce at rates of 10 kHz or more.
However, the excitation can sometimes tem-
porarily “shelve” the fluorophore in a long-
lived electronic triplet-state which will not
fluoresce again until the triplet state decays.
In addition, fluorophores in excited electronic
states can chemically interact with other flu-
orophores or surrounding molecules and be-
come destroyed—permanently unable to par-
ticipate in the excitation-fluorescence process.
These “burned out” fluorophores are said to

be photobleached. A photobleached sample
will not fluoresce. The longer the exposure
to the laser light and the higher the laser in-
tensity, the more likely the fluorophore is to
end up shelved or photobleached. Since both
processes lead to an average fluorescence that
is weaker than normal, it will also be impor-
tant to use a laser power that is not any larger
than necessary to obtain a strong fluorescent
signal.

The beam exiting directly from the laser
has a somewhat irregular intensity pro-
file and therefore—if focused by the micro-
scope objective—will not focus to a sharp,
diffraction-limited spot. Inserting a spatial fil-
ter (L1, P1, L2 in Fig. 1A) smooths the inten-
sity profile and consequently reduces the spot
size. One may think of the optical system as
using intense laser light to illuminate the pin-
hole aperture, and then projecting a sharp,
real image of that illuminated aperture onto
the sample.

We define a geometry where the microscope
slide is oriented parallel to the xy plane (see
Fig. 2), the laser beam propagates in the +z
direction, and the center of the beam focus is
r = 0. In the focal plane at z = 0, the laser
intensity pattern is reasonably well-described
by a Gaussian:

I(x, y, z = 0) = I0 exp

(
−2

x2 + y2

w2
0

)
(1)

where

I0 =
2P

πw2
0

(2)

and P is the total laser power exiting the ob-
jective. I0 is the maximum intensity at the
center of the laser spot and w0 describes the
radius of the spot in the horizontal plane. The
prefactor of 2 in the argument of the exponen-
tial is traditional in laser optics formulas and
implies that the intensity a distance w0 from
the origin has dropped off by a factor of e−2,
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Figure 2: Laser light is brought to a focus on a
solution containing a low concentration of fluores-
cent molecules. The molecules emit light as they
diffuse through the intense focal region and are
excited by the laser beam.

i.e., to 14% of its maximum, and 86% of the
beam power is inside this radius.

The smallest possible (diffraction limited)
spot size has a radius w0 ≈ λ/2 N.A. where the
numerical aperture for our objective N.A. =
1.4 gives a value for w0 around 0.2 µm. Our
apparatus typically gives w0 ≈ 0.3µm—a bit
larger than the diffraction limit.

The laser beam is sharply focused by the
objective and converges quickly coming into
the laser spot and diverges quickly coming out.
Consequently, its intensity also decreases away
from z = 0 and can be well modeled as follows

I(x, y, z) = I0(z) exp

(
−2

x2 + y2

w(z)2

)
(3)

where the on-axis intensity I0(z) falls off as

I0(z) =
I0

1 + (z/z0)
2 (4)

and the spot size increases as

w2(z) = w2
0

(
1 + (z/z0)

2
)

(5)

z0 describes the length scale in the z-direction
for the fall-off in laser intensity. It is related
to w0 by

z0 =
πw2

0

λ
(6)

and is a few times larger than w0.
The pinhole scheme is used again to en-

sure that only light from the excitation vol-
ume reaches the photon detector. The micro-
scope objective and lens L3 together form a
microscope that projects a magnified, real im-
age of the illuminated sample onto the image
plane. This is a so-called confocal configura-
tion (see Fig. 1B); a pinhole in the image plane
allows only the light within one small area of
the image to reach the detector. Of course,
that light originates from the corresponding
region of the sample, and thus the pinhole pre-
vents the detector from “seeing” other regions
of the sample. This detection area at the sam-
ple is a reduced or demagnified real image of
the pinhole P2. Our apparatus uses a pinhole
diameter of 75 µm and has a magnification of
about 100. Thus, the pinhole only allows light
from about a 0.75 µm diameter circular de-
tection area at the sample to pass through to
the photon detector. The P2 pinhole size is
specifically chosen so that the diameter of the
detection area matches the 2w0 diameter of
the focused laser spot reasonably well. Note
that the detection pinhole must be precisely
positioned in the xy direction if it is to overlap
with the bright fluorescence emission spot that
is being produced by the microscope objective
in the image plane; the pinhole is mounted on
an xy micrometer stage in order to facilitate
this positioning.

The optics/pinhole also affect the collection
efficiency for fluorescent emissions from fluo-
rophores away from z = 0. Fluorescent pho-
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tons are emitted in all directions and even at
z = 0, only a fraction of those photons emit-
ted toward the objective will be collected by
it and sent on to the image plane. The frac-
tion collected is proportional to the solid angle
collected by the objective. This solid angle
is largest at z = 0, where it depends on ob-
jective design, specifically its numerical aper-
ture or NA. The solid angle collected, and
thus the collection efficiency, falls off rapidly
away from z = 0. This is because away from
z = 0, only those photons that appear—were
their path extended forward or backward—as
if they could have come from the 0.75µm de-
tection area will be collected by the objective
and make it through the pinhole. In this way,
the optics/pinhole define a detection volume
and efficiency that depends on x, y and z.

The volume common to both the excita-
tion volume and the detection volume will be
called the measurement volume. Let dR(t)
represent the rate (photons/s) at which flu-
orescence photons arrive at the detector from
a very small volume element dV located at
a position r within the measurement volume.
dR(t) is determined by the product of the con-
centration C(r, t) of the fluorophore, the laser
beam intensity I(r), the efficiency with which
the fluorophore converts laser excitation en-
ergy to fluorescent emission, and the detec-
tion efficiency with which emitted photons are
turned into pulses by the PMT module. It will
be convenient to define an overall efficiency
Φ(r) that accounts for all factors except for
the fluorophore concentration. That is, we can
write

dR(t) = Φ(r)C(r, t)dV (7)

Equation 7 assumes that the fluorophore
emits fluorescent photons at a rate propor-
tional to the laser intensity at that point and
nothing else. For example, it does not ac-
count for photobleaching, shelving, or any
other mechanisms by which the fluorophore

efficiency changes in time or with laser inten-
sity. Taking such mechanisms into effect when
making predictions is non-trivial and so this
assumption should be checked by taking data
at several laser powers.

If the P2 pinhole is properly positioned so
that the detection volume overlaps the excita-
tion volume, Φ(r) can be approximated by a
three dimensional measurement Gaussian

Φ(r) = Φ0 exp

(
−2

x2 + y2

w2
xy

− 2
z2

w2
z

)
(8)

where wxy is roughly equal to the laser beam
spot radius (w0 in Eq. 1) and wz (roughly z0
in Eq. 4 and 5) is a few times larger.

Where the argument in parentheses above
is equal to one

x2 + y2

w2
xy

+
z2

w2
z

= 1 (9)

describes an ellipsoid with a circular cross sec-
tion of radius wxy in the x- and y-directions
and a radius wz in the z-direction. On this
ellipse, the efficiency has fallen to about 14%
of its maximum. The volume inside this el-
lipse is 4πωw2

xywz/3. Taking reasonable esti-
mates: wxy = 0.4µm and wz = 3µm, fluores-
cence is detected as individual particles diffuse
through a measurement volume V ≈ 1µm3 ≈
10−15 l or around 1 femtoliter.

To find the overall rate from the sample,
Eq. 7 must be integrated over all volume ele-
ments.

R(t) =
∫
d3r Φ(r)C(r, t) (10)

where we have used a shorthand notation for
triple integrations

∫
d3r =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

dx dy dz (11)
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Theory

FCS can be used to study experimental sam-
ples that contain multiple species of fluores-
cent molecules with different concentrations
Ci and diffusion coefficients Di (where i =
1, 2, . . . , Nspecies). Here, we develop the theory
of FCS for the simpler case in which the sam-
ple contains a single fluorescent species with
concentration C and diffusion coefficient D.
For multiple diffusing species the mathemat-
ics are more complex but not fundamentally
different. In the following we present a sim-
plified (Nspecies = 1) version of the multiple-
species theory as presented by Krichevsky and
Bonnet.

In a well-mixed solution at chemical and
thermal equilibrium, the concentration of the
fluorescent species will have a uniform steady-
state value C, where this value represents an
average over macroscopic scales of time and
distance. Over microscopic scales, however,
the particles are in continuous motion (diffu-
sive, i.e., Brownian motion) and so when av-
eraged over these much smaller length scales,
the concentration C(r, t) tends to fluctuate in
space and time. (See Figure 3.) The smaller
the averaging volume, the larger the fluctua-
tions.

Fluctuations in the concentration are cre-
ated continuously by random Brownian forces
while they simultaneously decay over time ac-
cording to the diffusion equation

∂C(r, t)

∂t
= D∇2C(r, t) (12)

where D is the diffusion coefficient of the flu-
orescent molecules.

Note that we can also write C(r, t) as the
sum of its constant average C and its time-
and space-dependent fluctuation δC(r, t):

C(r, t) =C+ δC(r, t) (13)

Figure 3: While the average concentration—
here, C ' 1 nM—remains constant, the instan-
taneous concentration of fluorescent molecules
C(r, t) averaged over a finite (but small) volume
fluctuates with time as the molecules diffuse in
and out of that volume.

With this definition, the temporal and spatial
averages of δC(r, t) will both be zero. More-
over, because C is constant, using Eq. 13 in
the diffusion equation 12 gives

∂δC(r, t)

∂t
= D∇2δC(r, t) (14)

Equation 14 describes a simple relationship
between the temporal and spatial behavior of
the fluctuations δC(r, t). At locations where
C is a maximum, i.e., where the second spatial
derivative of δC is negative), the time deriva-
tive of δC is negative, and so δC must decrease
in time. Further, the sharper the maximum in
δC, the more rapidly these local maxima dissi-
pate. Conversely, where the second derivative
is positive so that δC is locally at a minimum,
the concentration must increase over time; lo-
cal “gaps” in concentration tend to fill in over
time. In this way, Eq. 12 (or Eq. 14) state that
fluctuations or inhomogeneities in the concen-
tration tend to smooth themselves out, and
that the rate of smoothing is faster where δC
has a steeper gradient.

As we will see, the most useful information
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is contained in the relative changes in the flu-
orescence R(t) collected from an excited vol-
ume. The problem is to figure out how to ex-
tract that information: R(t) fluctuates contin-
uously as individual particles diffuse through
the measurement volume. Because these fluc-
tuations are random in time, there is not much
gained from studying R(t) directly. It is more
useful to examine statistical properties of R(t)
associated with its fluctuations as these can be
related to important physical parameters (D,
C, wxy, wz, etc.) of the experiment.

Autocorrelation

As we are interested in fluctuations of R(t),
we will focus on the quantity

δR(t) = R(t)−R (15)

using this with Eqs. 10 and 13, defines R as
the temporal average of R(t)

R=
∫
d3rCΦ(r) (16)

and δR(t) as due to the fluctuations in C(r, t)

δR(t) =
∫
d3rΦ(r)δC(r, t) (17)

δR(t) changes randomly over time and we
anticipate that it will change more rapidly if
the particles diffuse more rapidly, or if the de-
tection volume is smaller. Therefore, we wish
to characterize the time dependence of δR(t)
in a statistical way. A good way to do this is
to study the autocorrelation of δR(t), defined
as

G(t) =
〈δR(t′)δR(t′ + t)〉

R
2 (18)

The angle brackets in the numerator indicate
an ensemble average, meaning an average over
many (hypothetical) implementations of the

system and the measurement. The autocorre-
lation compares δR at a time t′ with its value
at a later time t′ + t (see Fig. 4). Suppose
that δR requires a time τ to change signifi-
cantly. Consequently, for t < τ , δR(t′ + t)
is likely to have the same sign as δR(t′); the
product δR(t)δR(t′ + t) will usually be pos-
itive, thereby leading to G(t) > 0. However,
for t� τ we expect that δR will have changed
considerably between t′ and t′ + t; δR(t′ + t)
will be equally likely to be positive or nega-
tive no matter what sign δR(t′) had; the prod-
uct δR(t′)δR(t′ + t) will be equally likely to
be positive or negative and it will average to
zero. Consequently, G(t) will approach zero
as t→∞.

We will assume that the fluctuations are sta-
tionary, in the sense that the statistics of δR
will be no different if we study them now than
if we study them later this afternoon. (Assume
that the sample doesn’t dry out!) In that case,
the time t′ in Eq. 18 might as well be t′ = 0
and we can rewrite Eq. 18 as

G(t) =
〈δR(0)δR(t)〉

R
2 (19)

where the angle brackets should be interpreted
as an expectation value, i.e., as an average over
infinitely many samples of the product of δR
at some point in time and its value a time t
later.

Using Eq. 17 in Eq. 19 tells us that, in order
to relate G(t) to the physical parameters D,C,
etc., we need to evaluate

G(t) =
1

R
2

∫
d3r

∫
d3r′ (20)

Φ(r)Φ(r′) 〈δC(r, 0)δC(r′, t)〉

where the expectation value brackets have
been moved inside the d3r and d3r′ integrals
where they are applied only to the product of
the concentrations as the concentration is the
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Figure 4: (A) The photon count rate R(t) fluc-
tuates randomly around its average valueR. In-
set: The autocorrelation function G(t) charac-
terizes the average similarity between δR(t′) and
δR(t′ + t). For shorter intervals t, both δR are
likely to be of the same sign, leading to a posi-
tive G(t). For longer intervals t, the fluctuations
are uncorrelated and G(t) → 0. (B) The calcu-
lated autocorrelation function (Eq. 54) is shown
for tD = 0.9 ms, ω = 1 and N = 0.34.

only quantity that fluctuates randomly. The
trick will be to calculate this expectation value
using the diffusion equation for δC(r, t) and a
property of δC(r, t) related to Poisson statis-
tics.

We start by defining the Fourier transform
(in all three dimensions) of δC(r, t).

C̃(q, t) =
1

(2π)3/2

∫
d3r δC(r, t)eiq·r (21)

for which the inverse transform is

δC(r, t) =
1

(2π)3/2

∫
d3q C̃(q, t)e−iq·r (22)

where q · r = qxx + qyy + qzz and the short-
hand notation is again used for the triple inte-
gration in q (d3q = dqx dqy dqz, with integra-
tion limits from −∞ to ∞). Inserting Eq. 22
into the diffusion equation, Eq. 14, noting
that ∇2e−iq·r = −q2e−iq·r (where, of course,
q2 = q · q = q2x + q2y + q2z) gives∫

d3q e−iq·r
(
∂C̃(q, t)

∂t
+Dq2C̃(q, t)

)
= 0

(23)
For this equation to be true, the term in paren-
theses must be zero for all q and solving it
gives

C̃(q, t) = C̃(q, 0)e−Dq
2t (24)

where, in order to satisfy initial conditions,
C̃(q, 0) must be the Fourier transform of
δC(r, 0)

C̃(q, 0) =
1

(2π)3/2

∫
d3r δC(r, 0)eiq·r (25)

For the Fourier transform at least, we have
found the time dependence of δC.

Now rewrite the expectation value using
Eq. 22 and then Eq. 24

〈δC(r, 0)δC(r′, t)〉

=
1

(2π)3/2

〈
δC(r, 0)

∫
d3q e−iq·r

′
C̃(q, t)

〉
=

1

(2π)3/2

∫
d3q e−iq·r

′
e−Dq

2t (26)〈
δC(r, 0)C̃(q, 0)

〉
Using Eq. 25 to substitute for C̃(q, 0) (using
the dummy integration variable r′′ as r and r′

are already in use) then gives

〈δC(r, 0)δC(r′, t)〉 (27)

=
1

(2π)3

∫
d3q e−iq·r

′
e−Dq

2t
∫
d3r′′ eiq·r

′′

〈δC(r, 0)δC(r′′, 0)〉
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As discussed in more detail below, the brack-
eted expression in the above integral is propor-
tional to a delta function δ(r − r′′). Together
with the Poisson statistics of fluctuations in
the number of particles in any given volume,
this means that the final integral in this equa-
tion satisfies∫

d3r′′ eiq·r
′′ 〈δC(r, 0)δC(r′′, 0)〉 =Ceiq·r (28)

So that Eq. 27 becomes

〈δC(r, 0)δC(r′, t)〉 (29)

=
C

(2π)3

∫
d3q e−Dq

2te−iq·r
′
eiq·r

Along with the diffusion equation, the trans-
formation from Eq. 27 to Eq. 29 is at the heart
of the theory and worth deriving.

More generally one can show∫
d3r′′ 〈δC(r, 0)δC(r′′, 0)〉 f(r′′) =Cf(r)

(30)

where f(r′′) is an arbitrary function of r′′.
Equation 30 is equivalent to the substitution

〈δC(r, 0)δC(r′′, 0)〉 =Cδ(r− r′′) (31)

where δ(r−r′′) is the Dirac delta function sat-
isfying ∫

d3r′′ f(r′′)δ(r− r′′) = f(r) (32)

To see how Eq. 30 comes about it is useful
to consider the integration over d3r′′ as being
performed numerically on an equally-spaced
three dimensional Cartesian grid. Let the grid
spacing be ` in all three directions so that the
volume elements will all have a volume ∆V =
`3. Each grid cell is centered on one position
r′′ = rj in the grid so that the left side integral
of Eq. 30 for one particular r = ri becomes:∫
d3r′′ 〈δC(ri, 0)δC(r′′, 0)〉 f(r′′) (33)

=
∑
all j

∆V 〈δC(ri, 0)δC(rj, 0)〉 f(rj)

where the sum is over grid points covering all
space.

Without loss of generality, we will choose
r = ri as located exactly at the center of one
particular cell in the sum over j. That is, ex-
actly one of the rj in the sum will be located
at ri. Moreover, the ri will also be associated
with a cell, again of volume ∆V = `3, which,
for j = i, will then be the exact same cell as
the one centered around rj. For all other j,
the cells will not have any common volume.

Now bring two ∆V ’s into the expectation
value on the right side of Eq. 33 transforming
it to

S =
1

∆V

∑
all j

〈∆V δC(ri, 0)∆V δC(rj, 0)〉 f(rj)

(34)
Each factor in the expectation value is now
the product of a concentration fluctuation
δC(r, 0) = C(r, 0)−C multiplied by a volume
∆V = `3. Of course,

n= ∆V C (35)

is just the average concentration times the vol-
ume and thus is equal to the average number
of fluorophores that can be expected in any
cell, while

n(r, 0) = ∆V C(r, 0) (36)

is the actual number in the cell. Thus, the
deviation δn(r, 0) of the number of particles
in the cell from the average becomes

δn(r, 0) = n(r, 0)−n
= ∆V

(
C(r, 0)−C

)
= ∆V δC(r, 0) (37)

Making this substitution, the right side of
Eq. 33 becomes

S =
1

∆V

∑
all j

〈δn(ri, 0)δn(rj, 0)〉 f(rj) (38)
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As the fluorophores diffuse under the action
of Brownian forces, their number in each cell
will change. At any particular time, the num-
ber n(r, 0) in any cell is a random variable.
Since all fluorophores follow independent ran-
dom paths, the probability per unit volume of
finding a fluorophore is everywhere constant
(and equal to C). Consequently, n(r, 0) must
follow a Poisson distribution (with a mean
of n). If the number in a particular cell is
noted at different times and averaged over very
long times one should find the average satisfies
〈n(r, 0)〉 = n, i.e.,

〈δn(r, 0)〉 = 0 (39)

and, as is well known for the Poisson distribu-
tion, the numbers in any one cell should have a
variance (mean of the squared deviation from
the mean) 〈(n(r, 0)−n)2〉 equal to the average
n. That is, for any r〈

(δn(r, 0))2
〉

= n (40)

Moreover, the actual number in different cells
will be uncorrelated—the variations in one cell
will not depend on the variations of any other
cell. At different times the deviations δn(r, 0)
will sometimes be positive and sometimes neg-
ative. While the square of the deviations in
the same cell is always positive and has an av-
erage given by Eq. 40, the product of the de-
viations in different cells will be equally likely
to be positive as negative and will average to
zero. That is for j 6= i,

〈δn(ri, 0)δn(rj, 0)〉 = 0 (41)

So now with Eqs. 40 and 41, the sum in
Eq. 38 can be performed. The only non-zero
term in the sum is for j = i and gives

S =
1

∆V
nf(ri)

= Cf(ri) (42)

Using this in Eq. 33 then gives Eq. 30, thereby
proving Eq. 28 and 29.

Now substitute Eq. 29 into Eq. 20 and inte-
grate over r and r′ to get

G(t) =
C

R
2

∫
d3q Φ̃(q)Φ̃(-q)e−Dq

2t (43)

where Φ̃(q) is the Fourier transform of Φ(r):

Φ̃(q) =
1

(2π)3/2

∫
d3rΦ(r)eiq·r (44)

Because Φ(r) is real, the two Fourier trans-
forms Φ̃(q) and Φ̃(−q) are complex conjugates

and so their product is
∣∣∣Φ̃(q)

∣∣∣2. Note that the

average photon count rateR in the denomina-
tor of 43 is

R=
∫
d3r Φ(r)C (45)

which we can write as

R=C(2π)3/2Φ̃(0) (46)

because the q = 0 Fourier transform compo-
nent of Φ(r) is given by

Φ̃(0) =
1

(2π)3/2

∫
d3r Φ(r) (47)

Using this in Eq. 43, G(t) can be expressed in
terms of physical parameters such as D andC
as well as the Fourier transform of the mea-
surement volume Φ(r):

G(t) =
1

(2π)3C Φ̃2(0)

∫
d3q

∣∣∣Φ̃(q)
∣∣∣2 e−Dq2t

(48)
Equation 48 may still seem obscure because

it contains Φ̃(q). However, the Fourier trans-
form of the Gaussian Φ(r) of Eq. 8 is not dif-
ficult to evaluate and gives

Φ̃(q) =
Φ0w

2
xywz

8
exp

(
−
w2
xy(q

2
x + q2y)

8
− w2

zq
2
z

8

)
(49)
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Using this in Eq. 48 (not only in the integrand,
but also in the scale factor out front Φ̃(0) =
Φ0w

2
xywz/8) leads to

G(t) =
1

(2π)3C

∫
d3q (50)

exp

(
−
w2
xy(q

2
x + q2y)

4
− w2

zq
2
z

4
−Dq2t

)
These Gaussian integrals are also relatively
simple to evaluate leading to

G(t) =
1

π3/2w2
xywzC

(51)

(
1 +

t

tD

)−1 (
1 +

t

ω2tD

)−1/2
In this equation we have defined a diffusion

time scale

tD =
w2
xy

4D
(52)

and a dimensionless ratio

ω =
wz
wxy

(53)

that describes the shape of the focal region.
We can think of tD as (roughly) the time that
it takes a molecule to diffuse across the xy di-
mension of the measurement volume. We can
think of the denominator of the prefactor as an
effective measurement volume Ve = π3/2w2

xywz
(about 1/3 larger than the ellipsoid volume of
(4/3)πw2

xywz) multiplied by the average parti-

cle concentrationC, i.e., it is the average num-
ber of particles N = CVe within the effective
measurement volume. This leads to a remark-
ably simple expression for the autocorrelation
function:

G(t) =
1

N

(
1 +

t

tD

)−1 (
1 +

t

ω2tD

)−1/2
(54)

The simplicity of this result, after all the work
that went into deriving it, is one of the mar-
vels of FCS. Note first that it describes a sim-
ple power law behavior. For a single diffus-
ing species, there is a single important time

scale tD. On time scales much shorter than
tD, G(t) → 1/N as t → 0. On much longer
time scales, G(t) falls off in power law fashion
G(t) ∝ t−3/2 as t → ∞. Second, it is note-
worthy that G(t) scales inversely with N, the
average number of particles in the measure-
ment volume: The smaller the number of par-
ticles in the sample, the larger the fluctuations
and consequently the larger the signal of inter-
est! This seems paradoxical, but it does show
why FCS is ideally suited for experiments us-
ing very low fluorophore concentrations (e.g.,
scarce biomolecules) and very small detection
volumes (e.g., inside living cells). Of course,
when the number of particles becomes exceed-
ingly small, the amount of fluorescent light de-
tected will decrease and can drop below the
amount needed to distinguish the fluorescent
signal from background due to detector dark
counts and counts from non-fluorescent light
leaking into the detector.

Exercise 1 Fill in the two missing steps for
determining G(t) by deriving Eqs. 49 (from
Eq. 44 with Eq. 8) and by deriving Eq. 51
(from Eq. 50). In each case, first show how the
triple integral is simply a product of three, one-
dimensional integrals of similar form. Deter-
mine the one-dimensional integrals and then
show how they give the final three-dimensional
result. You can use the following two Gaus-
sian integral formulas

∫ ∞
−∞

exp(−ax2)dx =

√
π

a
(55)

and

∫ ∞
−∞

exp(−ax2) cos(bx)dx =

√
π

a
exp

(
− b

2

4a

)
(56)

where a > 0, but should derive all other re-
sults.
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More complicated situations

We have considered only the simple case where
one fluorescent chemical species is present,
characterized by a single diffusion coefficient
D. More complex scenarios can also be stud-
ied. In the case where the sample contains two
fluorescent species that diffuse independently,
the signal is additive:

δR(t) = δRA(t) + δRB(t) (57)

As long as RA(t) and RB(t) are uncorrelated,
the correlation function for δR(t) is read-
ily calculated to be the additive sum of the
two correlation functions (see Equation 21 of
Krichevsky, 2002).

An interesting case occurs when the sample
contains two chemical species A and B that in-
terconvert through some form of reaction dy-
namics:

A ⇀↽ B (58)

If only one of these (A say) is actually fluores-
cent, then the molecular fluorescence blinks on
and off depending on the state the molecule is
in and the autocorrelation function becomes
modified. If the diffusion constants are the
same for both species (see Krichevsky (2002)),
the diffusion dynamics and the reaction dy-
namics are independent, and the resulting au-
tocorrelation function becomes a product of
the purely diffusive term already derived and
an extra factor describing the reaction dynam-
ics.

G(t) =
1

N

(
1 +

t

tD

)−1
(59)(

1 +
t

ω2tD

)−1/2
(1 +K exp(−t/τ))

The reaction dynamics factor 1 + Ke−t/τ de-
pends only on the reaction rates in each direc-
tion: kAB for A → B and kBA for B → A.

The time constant τ is the relaxation time for
the chemical reaction and given by

τ = (kAB + kBA)−1 (60)

and the ratio

K =
kAB
kBA

(61)

gives the equilibrium populations of state B
to state A

K =
CB

CA
(62)

and

N = (CA +CB)Ve (63)

is the average total number of molecules in the
effective volume.

For this reason, it is possible to use FCS to
measure not only the diffusion coefficient of a
chemical species but also the rates and equi-
librium constants for its reactions with other
species in the environment.

Exercise 2 (a) Show that for t � τ and
t � tD, G(t → 0) = 1/NA, i.e., it de-
pends only on the average number of fluoresc-
ing moleculesNA. (b) Consider the case where
τ � tD, i.e., when the molecule switches back
and forth between the fluorescing and non-
fluorescing states at a rate much faster than
the diffusion time through the measurement
volume. For this case, show that for t � τ ,
G(t) is the same as a purely diffusive G(t)
with an amplitude that depends on the aver-
age total number of molecules in the volume,
that is, including both the fluorescing and non-
fluorescing types. Explain why fast reaction
dynamics would be expected to have no effect
on G(t) for t � τ . Hint: When the molecule
diffuses into the measurement volume, the fast
reaction dynamics mean it will blink on and off
many times before diffusing out of that volume.
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Hardware

The Laser

The DPSS (diode-pumped solid state) laser
(Thorlabs, DJ532-40) produces a 532 nm
beam with an adjustable power up to a max-
imum of around 40 mW. It starts from a
808 nm diode laser which pumps a Nd:YVO4
(yttrium orthovanadate) crystal which then
lases at 1064 nm. This laser beam is incident
on a KTP (potassium titanyl phosphate) crys-
tal which frequency-doubles the laser light to
the 532 nm laser beam used in this experi-
ment.

The doubling process is very temperature
sensitive and so the laser is housed in a tem-
perature controlled mounting block (Thor-
labs, TCLD09) containing laser connections,
a 10 kΩ thermistor mounted near the laser,
and a Peltier thermoelectric device located be-
tween the laser at the front and a heat sink on
the back. Two electronics modules are used
with the laser/mounting block—a tempera-
ture controller and a current controller (Wave-
length Electronics, LFI 3500 and LFI 4500,
respectively).

When the temperature controller is
enabled—by pressing the button to the left
of the main temperature adjust knob at the
top right of the unit, a current is supplied
to the Peltier device in the mounting block.
Depending on the direction of the current, the
device can heat or cool the laser. The ther-
mistor resistance increases as its temperature
decreases and vice versa. The temperature
controller puts a fixed 100 µA current though
the thermistor and a feedback circuit com-
pares the resulting thermistor voltage with
that requested by the user. A feedback loop
in the controller adjusts the Peltier current
to keep them equal. The temperature adjust
knob is used with the main LED readout,
which gives the target thermistor resistance

in kΩ while the DISPLAY SET button is
depressed. The readout gives the actual
thermistor resistance when the button is not
pressed.

The current controller supplies an ad-
justable, low-noise, DC current to power the
808 nm pump laser. Turning up the laser cur-
rent (top right knob) increases the pump laser
current (LED display in mA) and the power in
the 532 nm beam, but the relationship is not
linear. There is a threshold current of about
130 mA to get any laser power and then the
power increases in a roughly quadratic manner
with current, but with a small dip around 200-
250 mA. The maximum allowable current is
around 330 mA and this limit is programmed
into the laser current supply and should not
be changed.

Even with a steady temperature and cur-
rent, the 532 nm beam intensity can oscillate
at high frequencies with various patterns. Os-
cillations have been found to be less likely at
lower laser temperatures (higher settings on
the temperature controller). To see if the laser
power is steady, a fraction of the laser power
is directed onto a fast photodiode detector
(Thorlabs, DET110, see Fig. 1), whose output
is monitored on an oscilloscope. If oscillations
are present, the laser current or temperature
should be adjusted to get rid of them. Laser
power fluctuations must be kept small as they
will contribute additional fluctuations on top
of those from the sample under study.

Using low temperature settings can create a
problem with moisture in the air condensing
on the laser. This problem shows up as a loss
of beam shape and/or a steering of the beam
by any water on the laser output surface. It
is not usually a problem if the laser is pow-
ered because the laser waste heat helps prevent
condensation. The problem mostly shows up
when the laser has been off for ten minutes or
more while temperature controller is left on at
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low temperature settings. If the laser current
will be off for more than a few minutes, the
temperature controller should also be turned
off.

Data Acquisition Hardware

Data for this experiment is collected by a
multifunction data acquisition (DAQ) mod-
ule (National Instruments, 6341) and a 640×
480 pixel CCD camera (Imaging Source
DBK.21AF04.AS). The camera uses a 4.5 mm
sensor (SONY, ICX098BQ which has square
pixels separated by 5.6 µm. A color filter
array covers the sensor with individual pix-
els filtered for either red, green, or blue light
sensitivity. The DAQ has many inputs and
outputs for controlling and monitoring ex-
perimental variables. This experiment uses
the DAQ timer/counter inputs for monitoring
pulses from the PMT and it uses the DAQ
16-bit analog-to-digital converter and ampli-
fier for measuring voltages from the photodi-
ode.

Software

There are three LabVIEW programs for this
experiment. The Monitor program is used to
monitor the PMT count rates and to moni-
tor the laser power as determined from the
photodiode. The FCS program monitors only
the photon counts from the PMT and com-
putes and graphs three quantities: the counts
over a user specified time interval as a func-
tion of time (essentially a rate meter); a fre-
quency histogram showing the distribution of
such counts; and the autocorrelation func-
tion averaged over time until stopped by the
user. The FCS Camera program allows the
user to view images and analyze cross sections
through them. To take video images or se-
quences, a fourth program, the NI Vision pro-

gram, should be used.

Monitor vi

The monitor program is typically used while
adjusting either the laser power or the position
of the pinhole P2 (or the the mirror M2) when
trying to maximize the overlap of the detection
volume with the excitation volume.

The monitor photodiode produces a current
I proportional to the laser power Pm incident
on its surface. According to the Thorlabs doc-
umentation, the sensitivity is about 0.33 amps
per watt. The current is converted to a volt-
age by passing it through a current amplifier
(Stanford Research Systems, SR570) charac-
terized by an adjustable transimpedance Rm

equal to the output voltage divided by the in-
put current. The SR570 also has filtering cir-
cuitry, which should be turned off. The tran-
simpedance Rm = V/I must be specified in
ohms in the transimpedance control on the
front panel of the Monitor program. (Rm is
the inverse of the amps/volt sensitivity setting
on the SR570.) Rm determines the photodi-
ode current from the measured voltage V . V
is monitored by an oscilloscope and simultane-
ously by an analog to digital converter (ADC
channel 0) on the DAQ system. The moni-
tor program averages the ADC voltage over a
user-specified averaging time and displays it
in the detector voltage indicator. This voltage
is converted to a current by the user-supplied
transimpedance Rm and the current is con-
verted to a incident power by the photodiode
sensitivity factor.

The final factor needed is the ratio of the
laser power out of the objective to the laser
power on the monitor photodiode. This frac-
tion should be determined by the fraction of
the 532 nm light transmitted by the dichroic.
The specifications for the dichroic, indicate
roughly 2% should be transmitted and thus
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the factor should be about 98/2 or around 50.
It is determined experimentally by mounting
a second photodiode above the objective such
that it collects all the laser light out of the ob-
jective. The factor so determined then multi-
plies the monitor power to give the power out
of the objective and, except for small losses
due to reflections from the coverslip, the power
on the sample. Use the default setting for
this ratio; redetermining it should only be at-
tempted with the instructor present.

Background light not arising from the laser
as well as DC offsets in the amplifiers may also
contribute to the ADC readings for the pho-
todiode and so there is a mechanism for sub-
tracting off this component. To use it, simply
turn off the laser and click on the zero detec-
tor button. The laser-off ADC voltage is then
read and subtracted from the laser-on voltage
before using the conversion factors to obtain
the laser power on the sample.

In general, use a transimpedance gain that
gives a voltage in the 0.5-5 V range. And
be sure to use the lowest possible range on
the ADC for measuring that voltage. Allowed
ranges are selected in the Range control. You
must stop and restart the program to change
the ADC range.

FCS Camera vi

The instructor will show you how to install
the removable mirror so that the magnified im-
age of the sample area will be focused on the
camera. The camera has an RGB Bayer filter
array over the array of pixels on the CCD sen-
sor so that color information is also available.
The red, green and blue pixel images can be
overlapped for a color image, or separated for
analysis of individual color planes.

The long-pass filter (F1) blocking the
532 nm light can be removed so that one can
look at reflections of the laser light from vari-

ous surfaces of the sample, such as the top or
bottom of the coverslip to determine the laser
spot size w0 in Eq. 1.

Horizontal or vertical cross sections can be
positioned through the areas of the camera im-
age where the fluorescent or reflected spots are
located and these one-dimensional cross sec-
tions can be saved or analyzed to determine
their width and line shape.

The NI Vision program (written by National
Instruments) is another program that works
with the camera and can be used for additional
image analysis tasks or for saving images or
video sequences. See the online help for details
on this program.

FCS vi

This vi collects data from the PMT module
and uses that data to determine and display
short term average photon rates, histograms
of these rates, and the autocorrelation func-
tion and to save the autocorrelation function
and/or fit it.

Photons detected by the photomultiplier are
converted in the base of its housing unit to
20 ns logic pulses which are routed to a 32-
bit counter/timer chip in the DAQ. The
DAQ system is programmed to connect a 100
MHz clock signal to the counting input of the
counter chip which continually counts these
pulses (clock ticks) starting from zero and run-
ning up to 232− 1 = 4.3× 109 before overflow-
ing back to zero. Thus, the overflow occurs
after about 43 seconds of data collection. The
photon pulses from the PMT are routed to
the gating input of the counter and on the ris-
ing edge of each gate pulse, the counter trans-
fers the current clock tick count to a buffer
on the DAQ and then LabVIEW transfers it
to main memory for use in the program. The
tick count recorded for each photon pulse is
thus a timestamp (with 10 ns resolution) for
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that photon’s arrival relative to the start of
data acquisition.

The program is set up to accept pho-
tons from two separate photomultipliers (data
channels A and B) and both can be time-
stamped by sending the respective photon
pulses to the gates of two different counters.
Both counters are programmed to start simul-
taneously counting the same 100 MHz clock
signal. Thus, photons arriving simultaneously
in both channels will have the same time-
stamp. The data stream consists of contin-
ually increasing values of the timestamp tAi in
clock ticks for the arrival of photons in channel
A, and another array of tBj giving the times-
tamps for the photons in channel B.

The experimental correlation function

The cross-correlation function for the photon
rates in two PMT detectors is a function of
the delay time t and is defined by

g(t) =
〈RA(t′)RB(t′ + t)〉

RARB
(64)

where RA(t) and RB(t) are the rates of pho-
ton detection from each photomultiplier at the
time t. As already mentioned in the theory
section, the photon rate RA(t) =RA + δRA(t)
can be considered as the sum of its constant
average valueRA and fluctuations δRA(t) (that
will then satisfy 〈δRA(t)〉 = 0). Similarly for
RB(t). With these substitutions, Eq. 64 be-
comes

g(t) =

〈
(RA + δRA(t′))(RB + δRB(t′ + t))

〉
RARB

=

〈
RARB + δRA(t′)δRB(t′ + t)

〉
RARB

= 1 +
〈δRA(t′)δRB(t′ + t)〉

RARB
(65)

where the cross terms—
〈
RAδRB(t′ + t)

〉
=

RA 〈δRB(t′ + t)〉 and the similar cross term

containing δRA(t′)—are both zero (because
the fluctuations average to zero) and have
been dropped.

The autocorrelation function is defined in
terms of the rate in a single detector and can
be considered as the cross correlation of a sig-
nal with itself: RB(t) = RA(t) = R(t) =
R+ δR(t). With this substitution, Eq. 65 be-
comes

g(t) = 1 +
〈δR(t′)δR(t′ + t)〉

R
2

= 1 +G(t) (66)

where G(t) is the autocorrelation function
given in the theory section.

Both g(t) andG(t) are referred to as correla-
tion functions, but experimentally g(t) is more
convenient to calculate directly from the pho-
ton stream according to the definition: Eq. 64.
The averaging indicated by the angle brackets
is performed by averaging over long times t′—
often several minutes or more. Then either
the theoretical G(t) or the experimental g(t)
is adjusted according to Eq. 66 to make com-
parisons or fits to theoretical formulas.

The data acquisition hardware and software
are set up to use two photon detectors going to
two timer/counters and to compute the cross
correlation between their count rates. If only
a single PMT detector is used, its pulses must
feed both counter/timer gates and would then
give that detector’s autocorrelation.

Quantum efficiency, dead time, dark
counts and afterpulsing

Photon detectors are not ideal.
They have a finite probability of produc-

ing an output pulse each time a photon hits
their cathode. This probability is the quantum
efficiency and depends on the photon wave-
length. Our detectors have a quantum effi-
ciency around 20% at 500 nm. The quantum
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efficiency affects the overall efficiency of the
apparatus and little else.

When a pulse is produced by the PMT,
the module is “dead” and will not be able to
process another incoming photon for a short
time thereafter. The dead time for our unit is
around 20 ns. The dead time causes an anti-
correlation (G(t) < 0) for all times below the
dead time.

After producing a pulse, and after the dead
time, the PMT has an enhanced probabil-
ity to produce a second pulse. The extra
pulse, called an afterpulse, arises because a
gas molecule in the PMT can become ionized
by a cascading electron and then accelerate
backward through the electrodes initiating an
electron ejection near the cathode or first dyn-
ode. This electron then starts another cascade
leading to a second pulse. In our apparatus,
afterpulsing occurs within a microsecond with
a probability of a few percent with virtually
no probability after 1 µs. Since afterpulsing is
initiated by a prior pulse, it gives a distinctly
shaped, positive contribution to G(t), but only
below 1 µs. There is little effect on the corre-
lation function beyond 1 µs. You will see the
effects of dead time and afterpulsing in your
experimental G(t).

Both the dead time and afterpulsing prob-
lem are eliminated by splitting the fluores-
cence into two beams (using a 50-50 beam
splitter just after the pinhole) and directing
them onto two separate PMTs—one for each
beam. The rates from each channel RA(t) and
RB(t) are then cross-correlated according to
Eq. 64 and should give a clean G(t), identi-
cal to the autocorrelation for a single detector,
but without the artifacts arising from dead
time and afterpulsing. The trade-off is a loss
by a factor of two in each rate in the calcula-
tion.

Thermionic electron emission (emission of
thermally energized electrons) from the cath-

ode or first dynode can produce an output
pulse called a “dark count.” Room light leak-
ing into the apparatus can also cause counts
unrelated to the fluorescence photons. We
will refer to all such pulses as “background
counts.” We assume the background rate B(t)
has a fixed average rate B, with natural ran-
dom fluctuations δB(t) = B(t)−B. The mea-
sured photon rate then increases from the the-
oretical R(t) to the measured rate R′(t) =
R(t) + B(t). B(t) is uncorrelated with R(t)
(and with itself at all times except t = 0).

Exercise 3 Including background counts, the
measured autocorrelation function G′(t) for
the rate R′(t) then becomes

G′(t) =
〈δR′(t′)δR′(t′ + t)〉

R′
2 (67)

Show that G′(t) would be given in terms of the
theoretical G(t) for R(t) according to

G′(t) = G(t)

(
1− B

R′

)2

(68)

where R′ = R + B is the average rate in-
cluding the background. Hint: the fact that
the background B(t) is uncorrelated with it-
self means that 〈δB(t′)δB(t′ + t)〉 = 0, for
all t (except t = 0) and that it is uncor-
related with R(t) means 〈δB(t′)δR(t′ + t)〉 =
〈δR(t′)δB(t′ + t)〉 = 0 for all t. By what frac-
tion is G(t) attenuated if half the photon rate
is due to background?

Correlation algorithm

In order to determine g(t) experimentally,
R(t) must first be estimated from the num-
ber of counts N(t) occurring over some finite
time interval ∆T centered around t, i.e., from
t−∆T/2 to t + ∆T/2. The photon rate over
this interval is then given by

R(t) =
N(t)

∆T
(69)
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Measuring over ∆T will average out real fluc-
tuations in the true rate on time scales shorter
than ∆T . Consequently, in order to calculate
correlations g(t) for a time delay t, the aver-
aging time ∆T must be well less than t.

What happens as ∆T is made smaller? N(t)
will be a Poisson random variable. It will come
from a distribution with some mean N (pro-
portional to ∆T ) and a standard deviation

σN =
√
N. Assuming ∆T is accurately known,

propagation of uncertainty tells us that the
relative uncertainty in R(t) is equal to the rel-
ative uncertainty in N . (The relative uncer-
tainty in a variable is its standard deviation
divided by its mean.) For a Poisson variable,

the relative uncertainty σN/N = 1/
√
N. Thus,

as ∆T is made smaller, the sample values N(t)
become smaller and thus have relatively more
uncertainty. The calculated R(t) from Eq. 69
will then give a less precise estimate of the true
rate over the interval ∆T .

On the other hand, we are not interested in
precise values for R(t). We are calculating a
correlation function and will be creating prod-
ucts of such rates at different delay times and
averaging that product over very long intervals
of many seconds. For computing the correla-
tion function, it turns out quite reasonable to
use the shortest possible averaging time—one
period of the 100 MHz clock or 10 ns! (We
will use τ to represent this 10 ns clock period.)
This will give terrible estimates for R(t) but
perfectly good estimates for g(t)—as long as
we average over long times.

First, let’s look at the possible measured
rates that can be expected if we average over
one clock tick. The maximum photon rate will
be at least two orders of magnitude lower than
the clock frequency. That is, it will be lower
than 1 MHz. If the true rate is 1 MHz, the
mean number of pulsesN in any one clock pe-
riod (10 ns) is N = 0.01. With this mean, the
Poisson probability distribution then suggests

that the probability of no photons in one clock
period is P (0) = (0.01)0e−0.01/0! = 0.99 and
99% of the clock periods will have no pulses
in them. The probability of 1 photon in this
interval is then P (1) = (0.01)1e−0.01/1! ≈ 0.01
and thus 1% will have one photon. A simple
calculation (of 1 − P (0) − P (1)) indicates a
0.005% chance that 2 or more photons will oc-
cur in one clock period. Experimentally, the
PMT dead time makes seeing two or more
pulses in one clock period impossible. Since
our rates are always lower than 1 MHz, we can
ignore the small theoretical possibility of such
an occurrence without significantly affecting
the analysis.

Taking N = 0 or N = 1 as the only pos-
sible values for the total number of photons
over the interval τ , the measured rate over any
clock period can only be 0/τ if N = 0 (no pho-
ton during the clock period) or 1/τ if N = 1
(one photon during the clock period). Despite
the fact that these two measured rates (0 or
100 MHz) will probably never be the true rate,
we will see they do give the correct g(t) when
applied to that calculation.

Exercise 4 Show that averaging the two pos-
sible rates, 0 and 1/τ , at each clock tick (de-
pending on whether or not a photon arrives in
that clock tick) gives the correct measured rate
N/∆T over any interval ∆T during which N
pulses arrive.

An algorithm similar to that of Yang et al.
is used to calculate the experimental correla-
tion function from the array of timestamps.
It is built around the idea that one uses the
two possible measured rates of 0 or 1/τ at
each clock tick when computing the correla-
tion function.

To calculate g(t), one must first decide the
maximum time delay tmax for which the corre-
lation function needs to be calculated. For the
samples studied here, a maximum time around
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one second is appropriate. The calculation of
g(t) will be performed on a discrete time grid,
tk = kτ , k = 0, 1, ..., kmax, with the spacing
between points equal to the clock period τ .
The time tmax then determines the grid size
kmax = tmax/τ . For tmax = 1 s, with τ = 10 ns,
the g(tk) array would contain kmax = 100 mil-
lion grid points.

The quantity inside the time averaging an-
gle brackets in Eq. 64 will be calculated at each
clock tick, tm. Let’s call this quantity

hm(tk) = RA(tm)RB(tm + tk) (70)

To get g(tk), one need only average this quan-
tity and then divide byRARB. Each hm(tk) will
be an array of 100 million values (one for each
possible delay time tk) and it will be evaluated
every 10 ns. We have added the subscript m to
indicate that that hm(tk) is evaluated for one
particular clock tick tm and the average will be
computed over M = T/τ clock ticks where T
is some long averaging interval. Thus, the ex-
pectation value in Eq. 64 will be approximated
by the finite average

g(tk) =
1

MRARB

M∑
m=1

hm(tk) (71)

to get the experimental g(t) on the time grid
tk.

A 100-million point array summed every 10
ns for several seconds would seem to be very
computer intensive. As will be seen, there are
many less computations than Eq. 71 would
suggest. The reason is most of the terms in the
sum are zero. If there is no A-photon detected
at tm (no timestamp tAi = tm), RA(tm) = 0
and hm(tk) = 0 for all k. There is nothing
to sum and no calculations are needed until
an A-photon arrives during one of the clock
ticks. Thus, we only need to calculate hm(tk)
for those tm where there is a timestamp in
channel A, i.e., for tm = tAi . For these clock

ticks, RA(tm) = 1/τ , and to get hm(tk), this
rate must be multiplied by the rate RB(tm+tk)
for all tk up to tmax.

Once again, the rate RB(tm + tk) is zero if
there is no B-photon at this clock tick or it is
1/τ if there is a B-photon at this clock tick.
Thus, hm(tk) is 1/τ 2 if there is both an A-
photon at tAi = tm and a B-photon at tBj =
tm + tk. Otherwise, it is zero.

The algorithm to average hm(tk) over long
times starts by making a histogram H(tk) and
initializing it with all zeros. Then, the first
timestamp in channel A, tA1 is read and a
subarray of timestamps in channel B is cre-
ated starting with the first one greater than
or equal to tA1 and ending with the last one
for which tBj ≤ tA1 + tmax. This subarray there-
fore includes all B-timestamps between tA1 and
tA1 + tmax.

The bin at tk is incremented for each time-
stamp in channel B at tBj = tA1 + tk. For ex-
ample, a B-photon at the same timestamp as
the one in channel A would cause bin zero to
be incremented. A B-photon found one clock
tick after tA1 would cause bin one to be in-
cremented. A B-photon found 1 million clock
ticks after tA1 would cause bin 1 million to be
incremented. That is, for each timestamp tBj in
the B-subarray, the histogram at tk = tBj − tA1
is incremented.

After incrementing the required bins for ev-
ery tBj in the B-subarray, the timestamp tA2 for
the next photon in channel A is read and the
subarray of B timestamps is updated. Times-
tamps at the beginning are checked and any
that are less than the new tA2 are deleted. If
necessary, new B timestamps are read and
added to the end of the subarray—again up
to and including the last one for which tBj ≤
tA2 + tmax. The bin-incrementing algorithm is
performed again for each timestamp in the B-
subarray and the process is repeated for each
tAi in sequence until tAi > T , i.e., until acquisi-
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tion is stopped at T = Mτ .
The program also keeps track of the total

number of pulses found in each channel, NA

and NB, over the averaging time T .
Note that the array of 1’s (and 0’s) that

are added to the histogram for each tAi , if di-
vided by τ 2, is one measured value of hm(tk) =
RA(tm)RB(tm + tk) at the clock tick tAi . Re-
call that hm(tk) = 0 for every clock tick where
there is no timestamp in channel A.

Dividing the histogram by τ 2 thus gives the
sum in Eq. 71

M∑
i=1

hm(tk) =
H(tk)

τ 2
(72)

Then, this quantity must be divided by M and
by the average rates: RA = NA/Mτ andRB =
NB/Mτ giving

g(tk) =
MH(tk)

NANB

(73)

The set of tk’s for which this calculation
is performed would be an equally spaced ar-
ray with 100 million elements. However, g(t)
is typically calculated and displayed on an
unequally-spaced grid of less than 1000 ele-
ments. This grid is designed to have smaller
spacings at shorter t and wider spacings at
longer t. This re-binning can be achieved by
grouping g(tk) into sets of adjacent elements—
smaller sets of 1 or 2 at the shortest delay
times tk and gradually increasing in propor-
tion to tk to sets of 1000 or more at longer tk.
The elements within each set are then aver-
aged to determine the g(t) for the t at the
middle of the set. The averaging produces
a near-logarithmic scaling of the array with
points closer together at short times and fur-
ther apart for longer times. The scaling is
reasonable because g(t) around any particular
time t is not expected to vary on time scales
much shorter than t. The algorithm of Lau-
rence, et al. is actually used to calculate g(t).

It takes less computations than the Yang al-
gorithm by efficiently histogramming data di-
rectly into such variably sized bins.

Determining the statistical uncertainty for
each point in g(t) and possible correlations
between points is quite difficult. It is rec-
ommended that you use Poisson weightings
(where each point in H(tk) is assumed to fol-
low a Poisson distribution) and equal weight-
ings (where all points in the fit have the same
weight) to see how sensitive fitting parameters
are to this choice. Be sure to check residuals
to look for systematic deviations between the
data and fit.

Procedures

Laser Safety

Note that although this experiment is not dan-
gerous, any eye exposure to the green laser
beam would be very dangerous: The beam is
very intense, with a power of tens of mW. Se-
rious and permanent eye injury could result if
the beam enters your eye. Proper laser eye
safety precautions must be used at any
time that the laser is running.

The apparatus is designed to keep the laser
beam enclosed within its intended optical path
and away from your eyes. The instrument is
safe to use as long as the laser remains en-
closed. Therefore, laser safety means that you
should not operate the laser when the beam
enclosure is open or any portion of the opti-
cal pathway has been opened or disassembled.
If you open or disassemble any components
while the laser is on, you could expose your-
self to the beam and suffer a potentially severe
injury. Do not attempt to align or adjust any
part of the laser optical path.

The only point in the apparatus where the
beam leaves its confining path is at the sample
slide. In this region the beam is strongly con-
verging/diverging and is not likely to present
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a hazard to the user. However you should use
common sense and avoid diverting the beam
out of this region. Do not place shiny, metal-
lic or reflective objects like mirrors or foil into
that region. Do not put your face close to the
slide if the laser is on.

General concerns

In addition to laser safety issues, please take
care to observe the following precautions

• Alignment of the optical system: All op-
tical elements have already been carefully
aligned and optimized. The only opti-
cal adjustments you will need to make
involve manual adjustments to the objec-
tive focusing and the positioning of the xy
stages holding pinholes P1 and P2. Please
do not attempt to move, disassemble or
adjust the laser optics or any of the mir-
rors, lenses or other optical components.
Any disassembly of the apparatus could
also lead to accidental and very danger-
ous eye exposure to the laser beam.

• The 100× objective: Please take care that
nothing (except immersion oil and lens
paper) ever touches the lens of the micro-
scope objective. In focusing or installing
the slide, you should not crash or scrape
the slide against the lens. When you are
finished for the day, please take a single
sheet of lens paper and gently wipe the
immersion oil from the lens. Do not scrub
the lens or use other kinds of wipes: a sin-
gle wipe with lens paper is fine.

Alignment

Unless there is a change made to the optical
layout, you should not need to adjust the two
mirrors that steer the laser beam into the spa-
tial filter, the two that steer it into the dichroic

mirror, or the M2 mirror that steers the flu-
orescence into the pinhole. The instructions
given below assume this full alignment as a
starting point. If this is the case, a fluorescent
signal should be relatively easy to find and
only fine adjustments to optimize the signal
will be needed. Even then, the instructor will
have to demonstrate various alignment steps.
If the apparatus is so poorly aligned that a flu-
orescent signal cannot be found, a full align-
ment may be needed and, again, the instruc-
tor will be needed to demonstrate the required
steps.

Diffusion measurements

The autocorrelation function for the diffusion
of particles or molecules in water will be used
to characterize the measurement volume and
to determine the molecular or particle inten-
sity, defined as the number of photons col-
lected per molecule or per particle per unit
laser power incident on the sample. This cali-
bration will be performed for both Alexa 532
dye molecules and for small polymer spheres
coated with a dye having properties similar to
the Alexa dye.

Samples must be freshly diluted from
the high concentration stock solutions using
proper pipetting techniques. Typical concen-
trations are 1-10 nM, but one could go a fac-
tor of 10-100 in either direction to see how the
concentration affects the measurements. Make
initial measurements with the 45 nm diame-
ter polystyrene spheres. The stock solution is
5% by weight. Polystyrene density is given as
1.05 g/cc. Make 1500 µl (1.5 cm3) sphere so-
lution diluted 1:100 to 5 × 10−4. Then dilute
this solution 1:10 to get 5×10−5 and then two
more times to get concentrations of 5 × 106

and 5× 10−7.

Exercise 5 Determine the 5% stock concen-
tration in units of particles per µm3.
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The sample solution can be placed in a
homemade microchannel cell. The cell is con-
structed from two pieces of double-sided tape
placed about 5 mm apart near the middle and
across the short direction of a regular micro-
scope slide. Use a razor blade to trim away
the tape not on the slide. Press a coverslip
perpendicular to the slide and centered on the
tape channel. Use the back of the razor blade
to firmly press the coverslip to the tape and
remove as many air bubbles in the adhesive
region as possible, but be careful not to break
the overhanging cover slip. The 5 mm chan-
nel between the tapes is where the sample goes
and should be about 50 µm deep.

Put a drop of immersion oil on the coverslip
and put this side down on the stage over the
objective. Raise the objective to get the im-
mersion oil between it and the coverslip. Use
a pipettor and drop about 50 µl of the sample
material on top of the coverslip at the channel
formed by the tape strips. Watch to ascer-
tain that the solution is forced into the chan-
nel by capillary action and then add another
50 µl or so to form small puddles at each end
of the channel. The solution evaporates fairly
quickly and maintaining a given concentration
is thus not easy.

After installing a fluorescent sample in the
apparatus, cover the sample area with a sheet
of anodize aluminum foil to prevent room light
from getting into the objective. Start the
Monitor program, turn off the room lights,
turn on the PMT modules and check the back-
ground rate. If it is more that 100 counts/s,
find and plug the light leaks.

Always start by adjusting the objective fo-
cus and the pinhole P2 to optimize the overlap
between the excitation and detection volumes.
The instructor will demonstrate how to find
a fluorescence signal and make these adjust-
ments.

Raising or lowering the objective changes

the laser focus position relative to the cover-
slip. The focus should not be too close to the
coverslip or the diffusive motion will be modi-
fied for particles wandering near the coverslip.
The focus should also not be too far from the
coverslip because the focusing is not as sharp
as it gets further from the coverslip. A rea-
sonable compromise is to raise the objective
about 20 µm from the coverslip. The instruc-
tor will show you how to adjust the objective
focus and how to ascertain the position of the
coverslip.

When studying a new molecule, always start
with a measurement of the saturation curve—
the photon rate vs. the laser power. Both
measurements can be made from the Monitor
program. The laser power is varied using neu-
tral density filters and by changing the laser
current. The laser power is measured by the
photodiode—properly scaled as described pre-
viously. Record and plot the count rate ver-
sus laser power. At low laser power, the count
rate should be proportional to power. As the
power increases, the central part of the laser
beam profile will go above the saturation in-
tensity and the count rate will start to fall be-
low the extrapolated low-power linear behav-
ior. Operate at the highest laser power that is
still in the the low-power linear regime. Fur-
ther increasing the laser power will produce
smaller increases in the count rate while en-
hancing deleterious effects due to saturation
and photobleaching.

Measure the correlation function for Alexa
532 and for the fluorescent microspheres. Con-
ditions that can be varied include depth of fo-
cus above the coverslip, laser power, and con-
centration. The size of the laser beam coming
into the objective and the size of the confo-
cal pinhole P2 can also be changed to see how
these parameters affect the results.
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Fluorescently-labeled DNA hairpin-
loops

DNA hairpin-loops are small single strands of
DNA (tens of base pairs) having an affinity for
their two ends to bind to one another. The
probability for the two ends to come together
(making a DNA loop) or break open are dif-
ferent and depend on the size and composition
of the loop as well as the temperature and ion
concentrations of the buffer solution in which
they are measured.

The two ends of the strand are modified
so that one end has a fluorophore and the
other end has a quencher—a molecule that
when brought near the fluorophore prevents
it from fluorescing. In the open configuration
the DNA fluoresces strongly. In the closed
configuration the quencher leads to a much
reduced fluorescence. The blinking (fluores-
cence turning on and off as the DNA opens and
closes) appears in the autocorrelation function
as a modulation of the normal diffusion term—
roughly as given by Eq. 60.

With our current apparatus and DNA stock,
the easiest study is to vary the concentrations
of Na+ ions in the 0.1-1.0 M range by adding
that concentration of NaCl into a buffer of
50 µM EDTA and 5mM cacodylic acid, pH
7.0. We have stock solutions of the same DNA
strand with and without the quencher.

See the Bonnet, et al. reference for more
details.
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