Submit only HW's. EX's are additional problems that I encourage you to work on.
(a.b) means problem number b of chapter a in Introduction to Solid State Physics (8th ed.) by Kittel.

Use SI unit.

Due April 19

HW 1: (10.1) (10 pt)

HW 2: Cooper pair problem: Answer the following questions after reading L.N. Cooper, Phys. Rev. 104, 1189 (1956).

In Cooper's model, the two electrons are added right outside of the Fermi surface at $T=0$ in an L^{3} box. The interactions between the electrons in the Fermi sphere as well as the interactions between the additional electrons with with Fermi sea are ignored. Only the spin-independent (weak attractive) interaction between the additional electrons $V\left(\vec{r}_{1}, \vec{r}_{2}\right)$ is considered. Then, the two-body Schrödinger equation can be written as:

$$
-\frac{\hbar^{2}}{2 m}\left(\nabla_{r_{1}}^{2}+\nabla_{r_{2}}^{2}\right) \psi_{\alpha, \beta}\left(\vec{r}_{1}, \vec{r}_{2}\right)+V\left(\vec{r}_{1}, \vec{r}_{2}\right) \psi_{\alpha, \beta}\left(\vec{r}_{1}, \vec{r}_{2}\right)=\left(\epsilon+2 E_{F}\right) \psi_{\alpha, \beta}\left(\vec{r}_{1}, \vec{r}_{2}\right),
$$

where α and β are spin indices. Recognizing translational invariance, $V\left(\vec{r}_{1}, \vec{r}_{2}\right)=V\left(\vec{r}_{1}-\vec{r}_{2}\right)$. In general, the two body wavefunction is given by

$$
\psi_{\alpha, \beta}\left(\vec{r}_{1}, \vec{r}_{2}\right)=e^{i \vec{K} \cdot\left(\vec{r}_{1}+\vec{r}_{2}\right) / 2} \phi\left(\vec{r}_{1}-\vec{r}_{2}\right) \chi(\alpha, \beta) .
$$

Here, \vec{K} is the total momentum and $\chi(\alpha, \beta)$ is the spin part of the wavefunction.
(a) Using $\phi\left(\vec{r}_{1}-\vec{r}_{2}\right)=\frac{1}{V} \sum_{k>k_{F}} g(\vec{k}) e^{i \vec{k} \cdot\left(\vec{r}_{1}-\vec{r}_{2}\right)}$, show that

$$
\frac{\hbar^{2}}{2 m}\left\{(\vec{k}+\vec{K} / 2)^{2}+(-\vec{k}+\vec{K} / 2)^{2}\right\} g(\vec{k})+\sum_{k^{\prime}>k_{F}} g\left(\overrightarrow{k^{\prime}}\right) V_{\vec{k}, \overrightarrow{k^{\prime}}}=\left(\epsilon+2 E_{F}\right) g(\vec{k}),
$$

where $V_{\vec{k}, \overrightarrow{k^{\prime}}}=\frac{1}{V} \int V(\vec{\rho}) e^{-i\left(\vec{k}-\overrightarrow{k^{\prime}}\right) \cdot \vec{\rho}} d^{3} \rho$. (10 pt)
(b) Show that the kinetic energy of the two electrons is minimum for $\vec{K}=0$. (5 pt)
(c) Therefore, one can choose $\vec{K}=0$. For

$$
V_{\vec{k}, \overrightarrow{k^{\prime}}}=-V_{o} \quad \text { only for } \quad E_{F}<\frac{\hbar^{2} k^{2}}{2 m}, \frac{\hbar^{2} k^{\prime 2}}{2 m}<E_{F}+\hbar \omega_{D},
$$

derive the following relation:

$$
1=V_{o} N\left(E_{F}\right) \int_{E_{F}}^{E_{F}+\hbar \omega_{D}} \frac{d E}{2 E-\epsilon-2 E_{F}} \cdot(10 p t)
$$

(d) As discussed in class, the above result leads to the existence of a bound state for an arbitrarily weak attractive interaction, which is directly related to the presence of the Fermi surface. Discuss the consequence of allowing the summation for all \vec{k}, not limited to $\vec{k}>\overrightarrow{k_{F}}$. (10 pt)

HW 3: Read Kittel Ch.10. Starting from Eq. (19) follow the calculations to Eq. (27) quantization of fluxoid. (10 pt) You may find the following paper interesting: R.D. Parks and W.A. Little, "Fluxoid Quantization in a Multiply-Connected Superconductors, Phys. Rev. 133, A97 (1964).

