Homework 4, PHY4905
Due Monday, February 1, 2016
Kittel, Chap. 5:
1. Kittel problem 4 in Chap. 5 (hint:  follow the treatment for the specific heat in 3 D, but instead of chap. 5, equations 18 and 19 in 3 D (and still using (=vK) find the total number of modes with wavevector less than K in 2 D.  Then use this N for D(() and plug into the integral for U (like in eqn. 5-25) and do the low T limit)
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‘The density of modes of each polarization type is D(®@) = dN/de = Aw/2nv’. The thermal average phonon
energy for the two polarization types is, for cach layer,
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Thus the heat capacity C = k, 8U/0t « T*.

(b) IF the layers are weakly bound together, the system behaves as a linear structure with each plane as a
vibrating unit. By induction from the results for 2 and 3 dimensions, we expect C oc T . But this only
holds at extremely low temperatures such that T << /iy, ~ iVNy., /L, where Nuye/L is the number of
layers per unit length.




2.  Imagine a 3 D material with a van Hove singularity at a frequency 

(van Hove = kBTvan Hove/ħ, with Tvan Hove = 100 K.  
a.)  Considering only the contribution to Clattice from the phonons at this frequency, 

what is the lattice specific heat at 50 K if the fraction of the total 3N phonon modes in the material involved in the van Hove singularity is 50%?
CV = 50% * 3NkB(ħ(E​/kBT)2exp(ħ(E​/kBT)/[ exp(ħ(E​/kBT) – 1]2]  where ħ(E​/kBT = 2

CV=1.5NkB(4)exp(2) / [exp(2)-1]2 = 6NkB *0.181=1.086NkB= 9.03 J/K
b.) If the other 50 % of the phonon modes (i. e. the other 1.5 N phonon modes) obey the Debye model of the specific heat  (i. e. D(() ~ (2) and ( (or (Debye)=300 K, at what temperature is the specific heat contribution from the two types of phonons equal?

CE= 50% * 3NkB(ħ(E​/kBT)2exp(ħ(E​/kBT)/[ exp(ħ(E​/kBT) – 1]2]  = CD=0.5 * 9NkB(T/300K)*integral (0 to 300/T)[dx(x4exp(x)/(exp(x)-1)2)]
In order to make this more intuitive, consider the graphs in Chap. 5

a.) the Debye model specific heat in Fig. 7 and

b.) the Einstein model specific heat (dashed line) in Fig. 11 (need to multiply by 4.186 to compare to Fig. 7

What we see from this comparison (without having to do a bunch of integration) is that, for (E (the van Hove singularity in this problem)=100 K,  for T>50 K in the Einstein model, CVEinstein (ignore the 50% - it affects both models equally for our comparison) >4.2 cal/molK, or 17.6 J/molK.  For Fig. 7, at 50 K (or 1/6 (D) CVDebye is only about 5 J/molK – i. e. much less since not many phonons are excited at such a small fraction of (D.  So at higher temperatures (around 1.4*(D) , where both models saturate to the Dulong and Petit limit of 24.9 J/molK, the two models will be about equal.  But at lower temperatures (20 - 350 K),  CVEinstein is bigger since T is a bigger fraction of the characteristic (E than it is of (D.  However, at really low temperatures, CVEinstein asymptotically approaches 
1.5NkB(ħ(E/kBT)2exp(-ħ(E/kBT)=1.5NkB(100/T) 2exp(-100/T), i. e. gets really small so at some point this will cross the low temperature limit of the Debye model so that below the crossing the Einstein model will be smaller, rather than larger.  
So, a second temperature where the two models are equal is findable from:

1.5NkB(100/T) 2exp(-100/T) = 0.5 (the 50%)*1944(T/(D)3 (eq. 32 in Chap. 5 with N and kB calculated out as done in lecture.)

12.47*1002 * T-2exp(-100/T) = [972/(300)3] T3, so 
exp(-100/T)=972/[12.47*1002 3003] T5 = 2.89 10-10 T5 
solving this gives T about 9 K for the crossing, so the Debye phonon contribution, where (D=300 K, is equal to the Einstein phonon contribution, where (E=100 K, when T is about 9 K.
3.  At 4 K, assuming both materials follow the Debye model of the lattice specific heat in this temperature range, what is the ratio of Clattice for Ge to Clattice for diamond?
At 4 K is in the low temperature limit, so Clattice~1/((D)3, so Clattice(Ge)/Clattice(C) = (2230/374)3 (values of Debye temperature from Table 1, Chap. 5) = 212
4.  Stainless steel (of approximate composition Fe0.74Cr0.18Ni0.08) has a rather low thermal conductivity, approximately 18 W/mK at room temperature vs over 200 W/mK for aluminum and around 80 W/mK (see Fig. 19 in Chap. 5) for germanium.  Why is that?  (Please state your reasoning clearly.)
K=1/3 Cvl  So the heat capacity, C, of mostly iron (Debye temperature=470 K) at room T is not that much different from Al ((D=428) and is only a bit smaller than that of Ge ((D =374 K) see, e. g., Fig 8 of Chap. 5 where the specific heat at room T for Si ((D=645 K) and Ge are within 20% of one another.  The respective sound velocities of stainless steel and Ge or Al are also rather similar (Google gives 5760 m/s for stainless, WebElements gives 5400 m/s for Ge and 5100 m/s for Al), with these values indicating a larger value for v and therefore by inference K for stainless.  Thus, it has to be the mean free path.  Stainless is an alloy, and has a microcrystalline structure that allows for lots of phonon scattering with energy loss.
