§1.6 Tensors
A more typical example of a tensor is the electromagnetic field strength ten-
sor. We all know that the electromagnetic fields are made up of the electric field
vector E; and the magnetic field vector B;. (Remember that we use Latin indices
for spacelike components 1, 2, 3.) Actually these are only “vectors” under rota-
tions in space, not under the full Lorentz group. In fact they are components of a
(0, 2) tensor F,,,, defined by

0 —-E, —-E, —E3
E; 0 B3 —B
E, —Bs 0 B
Es B, —B 0

Fu = = —Fyp (1.69)

From this point of view it is easy to transform the electromagnetic fields in one
reference frame to those in another, by application of (1.63). The unifying power
of the tensor formalism is evident: rather than a collection of two vectors whose

relationship and transformation properties are rather mysterious, we have a single
tensor field to describe all of electromagnetism. (On the other hand, don’t get car-
ried away; sometimes it’s more convenient to work in a single coordinate system
using the electric and magnetic field vectors.)

§1.8
MAXWELL'S EQUATIONS

We have now accumulated enough tensor know-how to illustrate some of these
concepts using actual physics. Specifically, we will examine Maxwell’s equa-
tions of electrodynamics. In 19th-century notation, these are

VXB-B;E:J

V-E=p
VXE“—B;B:O
V-B=0. (1.92)

Here, E and B are the electric and magnetic field 3-vectors, J is the current, p
is the charge density, and Vx and V- are the conventional curl and divergence.
These equations are invariant under Lorentz transformations, of course; that’s how
the whole business got started. But they don’t look obviously invariant; our ten-
sor notation can fix that. Let’s begin by writing these equations in component
notation,

€Ky By — E = J'

HE =J°
§KYEx + B =0
%B =0. (1.93)

In these expressions, spatial indices have been raised and lowered with aban-
don, without any attempt to keep straight where the metric appears, because §;;
is the metric on flat 3-space, with 8%/ its inverse (they are equal as matrices).
We can therefore raise and lower indices at will, since the components don’t
change. Meanwhile, the three-dimensional Levi-Civita symbol €% is defined
just as the four-dimensional one, although with one fewer index (normalized
so that €123 = &53 = 1). We have replaced the charge density by JO; this is
legitimate because the density and current together form the current 4-vector,
Jh = (p,J*, J7, J9).



From (1.93), and the definition (1.69) of the field strength tensor F,,, it is easy
to get a completely tensorial 20th-century version of Maxwell’s equations. Begin
by noting that we can express the field strength with upper indices as

Fi = &kp,. (1.94)

To check this, note for example that FO1 = 5011 Fy; and F!2 = 123 B;. Then
the first two equations in (1.93) become

3;FJ — goF% = J'
§F% = JO, (1.95)

Using the antisymmetry of F*¥, we see that these may be combined into the
single tensor equation

8, F"H = JY. (1.96)

A similar line of reasoning, which is left as an exercise, reveals that the third and
fourth equations in (1.93) can be written

O Fur = 0. (1.97)

It’s simple to verify that the antisymmetry of F,,, implies that (1.97) can be equiv-
alently expressed as

aquk + avFM/, + aAFMv =0. (1.98)

The four traditional Maxwell equations are thus replaced by two, vividly
demonstrating the economy of tensor notation. More importantly, however, both
sides of equations (1.96) and (1.97) manifestly transform as tensors; therefore, if
they are true in one inertial frame, they must be true in any Lorentz-transformed
frame. This is why tensors are so useful in relativity—we often want to express
relationships without recourse to any reference frame, and the quantities on each
side of an equation must transform in the same way under changes of coordinates.
As a matter of jargon, we will sometimes refer to quantities written in terms of
tensors as covariant (which has nothing to do with “covariant” as opposed to
“contravariant”). Thus, we say that (1.96) and (1.97) together serve as the covari-
ant form of Maxwell’s equations, while (1.92) or (1.93) are noncovariant.



§1.10 Classical Field Theory
A slightly more elaborate example of a field theory is provided by electro-
magnetism. We mentioned that the relevant field is the vector potential A ,; the
timelike component Ag can be identified with the electrostatic potential ®, and the
spacelike components with the traditional vector potential A (in terms of which
the magnetic field is given by B = V x A). The field strength tensor, with com-
ponents given by (1.69), is related to the vector potential by

Fuv = 8,4, — 3,4, (1.157)

From this definition we see that the field strength tensor has the important property
of gauge invariance: when we perform a gauge transformation on the vector
potential,

Ay — Au+0,0(x), (1.158)
the field strength tensor is left unchanged:
Fuy = Fuy +08,00h — 3,3, A = Fpuy. (1.159)

The last equality follows from the fact that partial derivatives commute, 9,0, =
9,0,,. Gauge invariance is a symmetry that is fundamental to our understanding
of electromagnetism, and all observable quantities must be gauge-invariant. Thus,
while the dynamical field of the theory (with respect to which we vary the action to
derive equations of motion) is A, physical quantities will generally be expressed
in terms of F,,.

We already know that the dynamical equations of electromagnetism are
Maxwell’s equations, (1.96) and (1.97). Given the definition of the field stregth
tensor in terms of the vector potential, (1.97) is actually automatic:

B[MFW] = 3[/,1,81)440'] — 8[M30 Ay =0, (1.160)

again because partial derivatives commute. On the other hand, (1.96) is equivalent
to Euler-Lagrange equations of the form

oL oL
— — 0 =0, 1.161
A, " (B@LAU)) (1161

if we presciently choose the Lagrangian to be

L=—LF F* +A,J" (1.162)



For this choice, the first term in the Euler-Lagrange equation is straightforward:
oL
dA,

=8, J=1J" (1.163)
The second term is tricker. First we write F,,, F*” as

FuyF* = FupF* = n® nPo FoygF e (1.164)

‘We want to work with lower indices on F),,, since we are differentiating with re-
spect to d, A, which has lower indices. Likewise we change the dummy indices
on F,, F*?, since we want to have different indices on the thing being differen-
tiated and the thing we are differentiating with respect to. Once you get familiar
with this stuff it will become second nature and you won’t need nearly so many
steps. This lets us write

M_ ap, fo |:< 0Fug ) ( dFpo ):'
so.ay =" ((Ga.4n) ot P (0,40 ) |- 169

Then, since Fyg = 9, Ag — g Ay, We have

dFyp

— 518 — §HsY. 1.166
3(3,4,) “F TP ( )

Combining (1.166) with (1.165) yields

d(FoFP
a(+4)) — % yPe [(3555 — 8482) oo + (81582 — 555;)1%]
wy
= ("0 — ) Fpo + (0P — 0™ PR Fop
= FHY _ YK + FHY _ FVH
= 4FH’, (1.167)
SO
9L
— _FHY, 1.168
83, A,) (1.168)

Then sticking (1.163) and (1.168) into (1.161) yields precisely (1.96):
B F"H =1J". (1.169)

Note that we switched the order of the indices on F'*" in order to save ourselves
from an unpleasant minus sign.



You may wonder what the purpose of introducing a Lagrangian formulation
is, if we were able to invent the equations of motion before we ever knew the
Lagrangian (as Maxwell did for his equations). There are a number of reasons,

starting with the basic simplicity of positing a single scalar function of spacetime,
the Lagrange density, rather than a number of (perhaps tensor-valued) equations
of motion. Another reason is the ease with which symmetries are implemented;
demanding that the action be invariant under a symmetry ensures that the dynam-
ics respects the symmetry as well. Finally, as we will see in Chapter 4, the action
leads via a direct procedure (involving varying with respect to the metric itself)
to a unique energy-momentum tensor. Applying this procedure to (1.148) leads
straight to the energy-momentum tensor for a scalar field theory,

T 60,6 — [%nwmam + V(¢)] . (1.170)

Similarly, from (1.162) we can derive the energy-momentum tensor for electro-
magnetism,

Tig = F*FY) — 0" F* Fy,. (1.171)

Using the appropriate equations of motion, you can show that these energy-
momentum tensors are conserved, 9, 7*" = 0 (and will be asked to do so in the
Exercises).

§1.11 Exercises

10. Using the tensor transformation law applied to F,,,, show how the electric and magnetic
field 3-vectors E and B transform under

(a) arotation about the y-axis,
(b) aboost along the z-axis.

11. Verify that (1.98) is indeed equivalent to (1.97), and that they are both equivalent to the
last two equations in (1.93).

12. Consider the two field theories we explicitly discussed, Maxwell’s electromagnetism
(let J# = 0) and the scalar field theory defined by (1.148).

(a) Express the components of the energy-momentum tensors of each theory in three-
vector notation, using the divergence, gradient, curl, electric, and magnetic fields,
and an overdot to denote time derivatives.

(b) Using the equations of motion, verify (in any notation you like) that the energy-
momentum tensors are conserved.
13. Consider adding to the Lagrangian for electromagnetism an additional term of the form
L =&,yp0 FF'FPO,
(a) Express £ in terms of E and B.

(b) Show that including £’ does not affect Maxwell’s equations. Can you think of a
deep reason for this?

L=—1n"(3,)(0,9) — V(@). (1.148)



