Conditions under which the stress tensor for a point particle is conserved

We take the energy-momentum of the point particle to be given by:

$$T^{\mu\nu}(x) = m \int \frac{\delta^4(x^\alpha - z^\alpha(\tau))}{\sqrt{-g(z)}} \dot{z}^\mu \dot{z}^\nu d\tau$$

Then

$$\begin{split} \nabla_{\mu}T^{\mu\nu}(x) &= \frac{\partial T^{\mu\nu}(x)}{\partial x^{\mu}} + \Gamma^{\mu}_{\mu\sigma}(x)T^{\sigma\nu}(x) + \Gamma^{\nu}_{\mu\sigma}(x)T^{\mu\sigma}(x) \\ &= m \int d\tau \bigg[\frac{\partial \delta^4(x^{\alpha} - z^{\alpha}(\tau))}{\partial x^{\mu}} \frac{\dot{z}^{\mu} \dot{z}^{\nu}}{\sqrt{-g(z)}} \\ &+ \left(\Gamma^{\mu}_{\mu\sigma}(x) \dot{z}^{\nu} + \Gamma^{\nu}_{\mu\sigma}(x) \dot{z}^{\mu} \right) \frac{\delta^4(x^{\alpha} - z^{\alpha}(\tau))}{\sqrt{-g(z)}} \dot{z}^{\sigma} \bigg] \\ &= m \int d\tau \bigg[- \frac{d\delta^4(x^{\alpha} - z^{\alpha}(\tau))}{d\tau} \frac{\dot{z}^{\nu}}{\sqrt{-g(z)}} \\ &+ \left(\Gamma^{\mu}_{\mu\sigma}(x) \dot{z}^{\nu} + \Gamma^{\nu}_{\mu\sigma}(x) \dot{z}^{\mu} \right) \frac{\delta^4(x^{\alpha} - z^{\alpha}(\tau))}{\sqrt{-g(z)}} \dot{z}^{\sigma} \bigg] \\ &= m \int d\tau \delta^4(x^{\alpha} - z^{\alpha}(\tau)) \bigg[\frac{d}{d\tau} \bigg(\frac{\dot{z}^{\nu}}{\sqrt{-g(z)}} \bigg) \\ &+ \bigg(\Gamma^{\mu}_{\mu\sigma}(x) \dot{z}^{\nu} + \Gamma^{\nu}_{\mu\sigma}(x) \dot{z}^{\mu} \bigg) \frac{\dot{z}^{\sigma}}{\sqrt{-g(z)}} \bigg] \\ &= m \int d\tau \dot{z}^{\sigma} \bigg[\nabla_{\sigma} \dot{z}^{\nu} + \bigg(\Gamma^{\mu}_{\mu\sigma}(x) - \Gamma^{\mu}_{\mu\sigma}(z) \bigg) \dot{z}^{\nu} \\ &+ \bigg(\Gamma^{\nu}_{\mu\sigma}(x) - \Gamma^{\nu}_{\mu\sigma}(z) \bigg) \dot{z}^{\mu} \bigg] \frac{\delta^4(x^{\alpha} - z^{\alpha}(\tau))}{\sqrt{-g(z)}} \end{split}$$

The last two terms in square brackets are zero because the δ -function multiplies terms which vanish at coincidence — for **any** orbit $z^{\alpha}(\tau)$. Thus, if $z(\tau)$ is a geodesic, $\nabla_{\mu}T^{\mu\nu}(x) = 0$. Note:

- The second equality holds because the derivative acts only on the δ -function.
- The third equality holds by introducing a change of sign upon swapping the arguments of the derivative on the δ -function and using $\dot{z}^{\mu}\partial/\partial x^{\mu} = d/d\tau$.
- The fourth equality holds from performing integration by parts.
- The fifth equality holds by rearrangement of terms after completing the covariant derivative on \dot{z}^{ν} and using $d \ln \sqrt{-g(z)}/d\tau = \Gamma^{\mu}_{\mu\sigma}(z)\dot{z}^{\sigma}$.
- The result given holds, and somewhat simpler, even if, from the beginning, $g(z) \Rightarrow g(x)$.