
Conditions under which the stress tensor for a point particle is conserved

We take the energy-momentum of the point particle to be given by:
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The last two terms in square brackets are zero because the δ-function multiplies terms which

vanish at coincidence — for any orbit zα(τ). Thus, if z(τ) is a geodesic, ∇µTµν(x) = 0.

Note:

• The second equality holds because the derivative acts only on the δ-function.

• The third equality holds by introducing a change of sign upon swapping the arguments

of the derivative on the δ-function and using żµ∂/∂xµ = d/dτ .

• The fourth equality holds from performing integration by parts.

• The fifth equality holds by rearrangement of terms after completing the covariant deriva-

tive on żν and using d ln
√

−g(z)/dτ = Γµ
µσ(z)żσ.

• The result given holds, and somewhat simpler, even if, from the beginning, g(z) ⇒ g(x).


