Conditions under which the stress tensor for a point particle is conserved

We take the energy-momentum of the point particle to be given by:
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The last two terms in square brackets are zero because the d-function multiplies terms which
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vanish at coincidence — for any orbit z%(7). Thus, if 2(7) is a geodesic, V,TH(x) = 0.
Note:

e The second equality holds because the derivative acts only on the J-function.

The third equality holds by introducing a change of sign upon swapping the arguments

of the derivative on the d-function and using 2#0/0z* = d/dr.

The fourth equality holds from performing integration by parts.

The fifth equality holds by rearrangement of terms after completing the covariant deriva-

tive on 2 and using d1n \/—g(z)/dr = Il (2)2°.

The result given holds, and somewhat simpler, even if, from the beginning, g(z) = g(z).



