I. BEHAVIOUR AND SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS

Suppose we have a general second order operator

$$
\begin{equation*}
\left(\frac{d^{2}}{d x^{2}}+p \frac{d}{d x}+q\right) y=0 \tag{1.1}
\end{equation*}
$$

Let us substitute the following

$$
\begin{equation*}
y=e^{\int f(x) d x} z \tag{1.2}
\end{equation*}
$$

One finds (prime denoting $\frac{d}{d x}$)

$$
\begin{gather*}
\frac{y^{\prime}}{y}=f+\frac{z^{\prime}}{z} \tag{1.3}\\
\frac{y^{(n+1)}}{y}=\left(\frac{y^{(n)}}{y}\right)^{\prime}+\frac{y^{(n)}}{y} \frac{y^{\prime}}{y} \tag{1.4}
\end{gather*}
$$

Thus, we get

$$
\begin{equation*}
\frac{y^{\prime \prime}}{y}=f^{\prime}+\frac{z^{\prime \prime}}{z}+f^{2}+2 f \frac{z^{\prime}}{z} \tag{1.5}
\end{equation*}
$$

and the main result

$$
\begin{equation*}
z^{\prime \prime}+(p+2 f) z^{\prime}+\left(q+f^{\prime}+p f+f^{2}\right) z=0 . \tag{1.6}
\end{equation*}
$$

Now let us put in the condition

$$
\begin{equation*}
f=-\frac{1}{2} p \tag{1.7}
\end{equation*}
$$

so that

$$
\begin{equation*}
z^{\prime \prime}+\left(q-\frac{1}{2} p^{\prime}-\frac{1}{4} p^{2}\right) z=0 \tag{1.8}
\end{equation*}
$$

and we get the invariant

$$
\begin{equation*}
Q=q-\frac{1}{2} p^{\prime}-\frac{1}{4} p^{2} \tag{1.9}
\end{equation*}
$$

of the equivalence class of equations.
Let us do the following change, $x \rightarrow r(x)$, such that $z^{\prime \prime}+Q z=0$ becomes (\cdot denotes $\left.\frac{d}{d r}\right)$

$$
\begin{equation*}
\left(r^{\prime}\right)^{2} \ddot{z}+r^{\prime \prime} \dot{z}+Q z=0 . \tag{1.10}
\end{equation*}
$$

(The domains over which solutions can be written may be quite different; i.e. $(-\pi, \pi) \rightarrow$ $(-\infty, \infty)$.) Now, Eq. (1.10) can be rewritten as

$$
\begin{equation*}
\left(r^{\prime}\right)^{2}\left(\ddot{z}+\frac{r^{\prime \prime}}{\left(r^{\prime}\right)^{2}} \dot{z}+\frac{Q}{\left(r^{\prime}\right)^{2}} z\right)=0 . \tag{1.11}
\end{equation*}
$$

Noting that

$$
\begin{equation*}
\frac{d}{d r}=\frac{1}{r^{\prime}} \frac{d}{d x} \tag{1.12}
\end{equation*}
$$

we can write

$$
\begin{align*}
-\frac{1}{2} \frac{1}{r^{\prime}}\left(\frac{r^{\prime \prime \prime}}{\left(r^{\prime}\right)^{2}}-\frac{2\left(r^{\prime \prime}\right)^{2}}{\left(r^{\prime}\right)^{3}}\right) & -\frac{1}{4} \frac{\left(r^{\prime \prime}\right)^{2}}{\left(r^{\prime}\right)^{4}}=-\frac{1}{2\left(r^{\prime}\right)^{2}}\left(\frac{r^{\prime \prime \prime}}{r^{\prime}}-\frac{3}{2} \frac{\left(r^{\prime \prime}\right)^{2}}{\left(r^{\prime}\right)^{2}}\right) \\
& =\frac{\left(\left(r^{\prime}\right)^{-\frac{1}{2}}\right)^{\prime \prime}}{\left(r^{\prime}\right)^{2}\left(r^{\prime}\right)^{-\frac{1}{2}}} \tag{1.13}
\end{align*}
$$

Using Eq. (1.13) and the transformation $z \rightarrow z e^{\frac{1}{2} \int \frac{r^{\prime \prime}}{r^{\prime}} d x}$ we get

$$
\begin{equation*}
\left(\frac{d^{2}}{d r^{2}}+\frac{1}{\left(r^{\prime}\right)^{2}}\left(Q+\frac{\left(\left(r^{\prime}\right)^{-\frac{1}{2}}\right)^{\prime \prime}}{\left(r^{\prime}\right)^{-\frac{1}{2}}}\right)\right) z e^{\frac{1}{2} \int \frac{r^{\prime \prime}}{r^{\prime}} d x}=0 \tag{1.14}
\end{equation*}
$$

(The Schwarzian derivative is given by

$$
\begin{gather*}
\{r, x\} \equiv\left(\frac{r^{\prime \prime \prime}}{r^{\prime}}-\frac{3}{2} \frac{\left(r^{\prime \prime}\right)^{2}}{\left(r^{\prime}\right)^{2}}\right) \tag{1.15a}\\
\{x, r\}=\frac{1}{\left(r^{\prime}\right)^{2}}\{r, x\} \tag{1.15b}
\end{gather*}
$$

For some function S

$$
\begin{equation*}
\left.\{S, x\} \equiv\{S, r\}\left(r^{\prime}\right)^{2}+\{r, x\} .\right) \tag{1.16}
\end{equation*}
$$

Note that

$$
\begin{equation*}
e^{\frac{1}{2} \int \frac{r^{\prime \prime}}{r^{\prime}} d x}=e^{\left(\ln \frac{r^{\prime \prime}}{r^{\prime}}\right) \frac{1}{2}}=\sqrt{r^{\prime}} . \tag{1.17}
\end{equation*}
$$

Thus Eq. (1.14) becomes

$$
\begin{equation*}
\left(\frac{d^{2}}{d r^{2}}+\frac{1}{\left(r^{\prime}\right)^{2}}\left(Q+\frac{\left(\left(r^{\prime}\right)^{-\frac{1}{2}}\right)^{\prime \prime}}{\left(r^{\prime}\right)^{-\frac{1}{2}}}\right)\right) \sqrt{r^{\prime}} z=0 \tag{1.18}
\end{equation*}
$$

Suppose that r is chosen such that the second term of Eq. (1.18) is zero, then a solution z of Eq. (1.18) is

$$
\begin{equation*}
z=\left(r^{\prime}\right)^{-\frac{1}{2}} \tag{1.19}
\end{equation*}
$$

A linearly independent solution of $\frac{d^{2}}{d r^{2}} \sqrt{r^{\prime}} z=0$ is

$$
\begin{equation*}
z=r\left(r^{\prime}\right)^{-\frac{1}{2}} \tag{1.20}
\end{equation*}
$$

Now suppose that the second term of Eq. (1.18) is equal to one, then we find for

$$
\left(\frac{d^{2}}{d r^{2}}+1\right) \sqrt{r^{\prime}} z=0
$$

that

$$
\begin{equation*}
z=\frac{e^{ \pm i r}}{\sqrt{r^{\prime}}} \tag{1.21}
\end{equation*}
$$

Eq. (1.21) is similar in form to a solution like

$$
\begin{equation*}
G=\frac{e^{ \pm \int \sqrt{F} d x}}{F^{\frac{1}{4}}} \tag{1.22}
\end{equation*}
$$

One uses this in a W.K.B. approximation. Every solution can be written in the form Eq. (1.22). As an example we can write

$$
\begin{equation*}
\frac{\sin r}{\sqrt{r^{\prime}}}=\frac{e^{i g}}{\sqrt{g^{\prime}}} \tag{1.23}
\end{equation*}
$$

This g must be a non-trivial complex function.

II. FORM OF SOLUTIONS NEAR REGULAR SINGULAR POINTS

For

$$
\begin{equation*}
z^{\prime \prime}+Q z=0 \tag{2.1}
\end{equation*}
$$

if we have a solution z_{1} we can always find another solution

$$
\begin{equation*}
z_{2}=z_{1} \int \frac{1}{\left(z_{1}\right)^{2}} d x \tag{2.2}
\end{equation*}
$$

For

$$
\begin{equation*}
y^{\prime \prime}+p y^{\prime}+q y^{\prime}=0 \tag{2.3}
\end{equation*}
$$

we have the analogous second solution

$$
\begin{equation*}
y_{2}=y_{1} \int \frac{W(x)}{\left(y_{1}\right)^{2}} d x \tag{2.4}
\end{equation*}
$$

Consider the following (form of the confluent hypergeometric) equation

$$
\begin{equation*}
z^{\prime \prime}+\left(-\alpha^{2}+\frac{2 \alpha \beta}{x}+\frac{\frac{1}{4}-\gamma^{2}}{x^{2}}\right) z=0 \tag{2.5}
\end{equation*}
$$

This has a regular singular point at $x=0$ and an irregular singular point at $x=\infty$. Now, for $x \rightarrow 0, z$ will have the behaviour

$$
\begin{equation*}
z \rightarrow x^{\frac{1}{2}+\epsilon^{\prime} \gamma}, \epsilon^{\prime}= \pm 1 \tag{2.6a}
\end{equation*}
$$

and for $x \rightarrow \infty, z$ will have the behaviour

$$
\begin{equation*}
z \rightarrow e^{\epsilon \alpha x} x^{-\epsilon \beta}, \epsilon= \pm 1 \tag{2.6b}
\end{equation*}
$$

For an arbitrary point (ordinary) we can impose whatever boundary conditions we want

$$
x \rightarrow x_{0}: z=1,\left(x-x_{0}\right) .
$$

For the hypergeometric equation we would consider

$$
\begin{equation*}
x(x-1) z^{\prime \prime}+\left(\left(\frac{1}{4}-\alpha^{2}\right)-\frac{\left(\frac{1}{4}-\beta^{2}\right)}{x}+\frac{\left(\frac{1}{4}-\gamma^{2}\right)}{x-1}\right) z=0 . \tag{2.7}
\end{equation*}
$$

The behaviour near $x \rightarrow 1,0, \infty$ will be

$$
\begin{equation*}
x \rightarrow 1:(x-1)^{\frac{1}{2}+\epsilon^{\prime \prime} \gamma}, \epsilon^{\prime \prime}= \pm 1 \tag{2.8a}
\end{equation*}
$$

$$
\begin{align*}
& x \rightarrow 0: x^{\frac{1}{2}+\epsilon^{\prime} \beta}, \epsilon^{\prime}= \pm 1 \tag{2.8b}\\
& x \rightarrow \infty: x^{\frac{1}{2}+\epsilon \alpha}, \epsilon= \pm 1 . \tag{2.8c}
\end{align*}
$$

Now let us look at solving equations like Eq. (2.5). Suppose we factor out the quantity

$$
\begin{equation*}
z=x^{\frac{1}{2}+\epsilon^{\prime} \gamma} e^{\epsilon \alpha x} u(x) \tag{2.9}
\end{equation*}
$$

where $u(x)$ is some series. We will find that if

$$
\begin{equation*}
\frac{1}{2}+\epsilon^{\prime} \gamma+N \equiv-\epsilon \beta \tag{2.10}
\end{equation*}
$$

then the series will truncate. It is most important (necessary) for truncation that N be an integer. Putting Eq. (2.9) in Eq. (2.5) we get

$$
\begin{equation*}
u^{\prime \prime}+2\left(\epsilon \alpha+\frac{\frac{1}{2}+\epsilon^{\prime} \gamma}{x}\right) u^{\prime}+\frac{2 \epsilon \alpha\left(\epsilon \beta+\frac{1}{2}+\epsilon^{\prime} \gamma\right)}{x} u=0 \tag{2.11}
\end{equation*}
$$

Now let

$$
\begin{equation*}
u=\sum_{n} a_{n} x^{n} \tag{2.12}
\end{equation*}
$$

so that we get the following recurrence relation

$$
\begin{equation*}
(n+1) n a_{n+1}+2 \epsilon \alpha\left(\frac{1}{2}+\epsilon \beta+\epsilon^{\prime} \gamma\right) a_{n}+\left(\frac{1}{2}+\epsilon^{\prime} \gamma\right)(n+1) a_{n+1}+2 \epsilon \alpha n a_{n}=0 \tag{2.13}
\end{equation*}
$$

Truncation occurs if there exists an N such that

$$
\begin{equation*}
a_{n+1} \equiv 0 \tag{2.14}
\end{equation*}
$$

which is implied by Eq. (2.10).
Let us operate on $x *$ (Eq. (2.11)) n times with $\frac{d}{d x}$. We will get

$$
\begin{equation*}
\left(\left(x \frac{d^{2}}{d x^{2}}+2\left(\epsilon \alpha x+\frac{1}{2}+\epsilon^{\prime} \gamma+\frac{1}{2} n\right) \frac{d}{d x}+2 \epsilon \alpha\left(\epsilon \beta+\frac{1}{2}+\epsilon^{\prime} \gamma\right)+2 \epsilon \alpha n\right) \frac{d^{n}}{d x^{n}}\right) u=0 \tag{2.15}
\end{equation*}
$$

Note that this equation is always second order in the $n^{\text {th }}$ derivative, and that when $\epsilon \beta+$ $\frac{1}{2}+\epsilon^{\prime} \gamma$ is a negative integer $-N$, then one solution for $\frac{d^{N} u}{d x^{N}}$ is a constant (i.e., gives the truncating solution). Also, from Eq. (2.15) we see that $\frac{d^{n}}{d x^{n}}$ acting on u is a shift (cf. raising or lowering) operator, with the action

$$
\begin{equation*}
\gamma \rightarrow \epsilon^{\prime} \gamma+\frac{\epsilon^{\prime} n}{2}, \beta \rightarrow \epsilon^{\prime} \beta+\frac{\epsilon n}{2} \tag{2.16}
\end{equation*}
$$

In Quantum Mechanics, Eq. (2.7) arises for the (spin-weighted) spherical harmonics with

$$
\begin{aligned}
& \alpha=\ell+\frac{1}{2} \\
& \beta=\frac{1}{2}(s-m) \\
& \gamma=\frac{1}{2}(s+m)
\end{aligned}
$$

and Eq. (2.5) arises for the Coulomb (radial) wave functions, with bound state occurence being given by a condition for truncating solutions.

From Eq. (2.7) lets now pull out the factor

$$
\begin{equation*}
z=x^{\frac{1}{2}+\epsilon^{\prime} \beta}(x-1)^{\frac{1}{2}+\epsilon^{\prime \prime} \gamma} u(x) \tag{2.17}
\end{equation*}
$$

then (after several lines of algebra) we will find the condition for truncation is:

$$
\begin{equation*}
\frac{1}{2}+\epsilon^{\prime} \beta+\frac{1}{2}+\epsilon^{\prime \prime} \gamma+N=\frac{1}{2}+\epsilon \alpha \tag{2.18}
\end{equation*}
$$

In general, we find that $\frac{d^{k} u}{d x^{k}}$ gives rise to a solution of Eq. (2.5) with $\beta \rightarrow \beta+\epsilon^{\prime} \frac{k}{2} ; \gamma \rightarrow$ $\gamma+\epsilon^{\prime \prime} \frac{k}{2}$.

Raising and lowering operator characteristics are determined entirely by techniques considered above.

III. RECURRENCE RELATIONS

In general, a recurrence relation has the form

$$
\begin{equation*}
\tilde{y}=\alpha(x) y+\beta(x) \frac{\partial y}{\partial x} . \tag{3.1}
\end{equation*}
$$

We want to devise a method, in principle, for understanding why recurrence relations exist and what characterizes their behaviour.

Rewrite Eq. (3.1) as

$$
\begin{equation*}
\tilde{y}=\beta\left(\frac{\partial}{\partial x}+\frac{\alpha}{\beta}\right) y \tag{3.2}
\end{equation*}
$$

or alternatively

$$
\begin{equation*}
\tilde{y}=B \frac{\partial}{\partial x} A y \tag{3.3}
\end{equation*}
$$

In the simplest recurrence relation for Eq. (2.5) above we would have

$$
\begin{equation*}
\frac{\alpha}{\beta} \sim \mu+\frac{\lambda}{x} \tag{3.4a}
\end{equation*}
$$

and for Eq. (2.7)

$$
\begin{equation*}
\frac{\alpha}{\beta} \sim \frac{\sigma}{x}+\frac{\tau}{x-1} . \tag{3.4b}
\end{equation*}
$$

Then we would have

$$
\begin{equation*}
A(x)=e^{\mu x} x^{\lambda} \text { or } x^{\sigma}(x-1)^{\tau} \tag{3.5}
\end{equation*}
$$

as given by the constructions indicated in the previous section.
Consider the two equations

$$
\begin{align*}
\left(\partial_{x x}+q(x)\right) y & =0 \tag{3.6a}\\
\left(\partial_{x x}+Q(x)\right) z & =0 \tag{3.6b}
\end{align*}
$$

We want to seek α, β (which truncate) such that

$$
\begin{equation*}
y=\alpha z+\beta z^{\prime} \tag{3.7}
\end{equation*}
$$

Let Eq. (3.6a-b) be anything we wish to write down. Suppose that two linearly independent solutions y_{1}, y_{2} exist for Eq. (3.6a). Also, let the same be true for z_{1}, z_{2} of Eq. (3.6b). A possible, but not useful, situation is when Eq. (3.7) would map $z_{1} \rightarrow y_{1}$ but would permit $z_{2} \rightarrow$ anything, e.g.,

$$
\begin{equation*}
y_{1}=\left(f(x)\left(\partial_{x}-\frac{z_{1}^{\prime}}{z_{1}}\right)+\frac{y_{1}}{z_{1}}\right) z_{1} \tag{3.8}
\end{equation*}
$$

However, $f(x)$ has no restrictions so that Eq. (3.8) is not very useful - it is too general.
Consider the equations

$$
\begin{gather*}
y_{1}=\alpha z_{1}+\beta z_{1}^{\prime} \tag{3.9a}\\
y_{2}=\alpha z_{2}+\beta z_{2}^{\prime} \tag{3.9b}
\end{gather*}
$$

The solutions for α and β are

$$
\begin{align*}
& \alpha=\frac{-z_{1}^{\prime} y_{2}-z_{2}^{\prime} y_{1}}{W\left(z_{1}, z_{2}\right)} \tag{3.10a}\\
& \beta=\frac{z_{1} y_{2}-z_{2} y_{1}}{W\left(z_{1}, z_{2}\right)} \tag{3.10b}
\end{align*}
$$

where $W($,$) is the Wronskian. In general there exists an inverse map$

$$
\begin{equation*}
z=\frac{1}{k}\left(\left(\alpha+\beta^{\prime}\right) y-\beta y^{\prime}\right) \tag{3.11}
\end{equation*}
$$

where

$$
\begin{equation*}
k=\frac{W\left(y_{1}, y_{2}\right)}{W\left(z_{1}, a_{2}\right)}=\mathrm{constant} \tag{3.12}
\end{equation*}
$$

Thus our mapping and its inverse exists and is unique for the Eqs. (3.6a,b). Now

$$
\begin{gather*}
\left(\partial_{x x}+q(x)\right)=\left(\partial_{x}+\frac{\alpha+\beta^{\prime}}{\beta}\right)\left(\partial_{x}-\frac{\alpha+\beta^{\prime}}{\beta}\right)+\frac{k}{\beta^{2}} \tag{3.13a}\\
\left(\partial_{x x}+Q(x)\right)=\left(\partial_{x}-\frac{\alpha}{\beta}\right)\left(\partial_{x}+\frac{\alpha}{\beta}\right)+\frac{k}{\beta^{2}} \tag{3.13b}
\end{gather*}
$$

Thus

$$
\begin{gather*}
q=\frac{k}{\beta^{2}}-\left(\frac{\alpha+\beta^{\prime}}{\beta}\right)-\left(\frac{\alpha+\beta^{\prime}}{\beta}\right)^{2} \tag{3.14a}\\
Q=\frac{k}{\beta^{2}}+\left(\frac{\alpha}{\beta}\right)^{\prime}-\left(\frac{\alpha}{\beta}\right)^{2} \tag{3.14b}
\end{gather*}
$$

When β is a constant we get the simplest examples of "raising" and "lowering" type of operators.

If we choose our mapping as

$$
\begin{align*}
& z_{1} \rightarrow a y_{1}+b y_{2} \tag{3.15a}\\
& z_{2} \rightarrow c y_{1}+d y_{2} \tag{3.15b}
\end{align*}
$$

such that $a d-b c \neq 0$, then for $b=c=1, a=d=0$,

$$
\begin{equation*}
\beta=\frac{y_{1} z_{1}-y_{2} z_{2}}{W} \tag{3.16}
\end{equation*}
$$

We find that there are four linearly independent β 's. It is not always clear, however, which β to pick, or that any useful choice is available.

Look at

$$
\begin{align*}
& \beta^{2}\left(\partial_{x x}+q\right)=\left(\beta \partial_{x}+\alpha\right)\left(\beta \partial_{x}-\alpha-\beta^{\prime}\right)+k \tag{3.17a}\\
& \beta^{2}\left(\partial_{x x}+Q\right)=\left(\beta \partial_{x}-\alpha-\beta^{\prime}\right)\left(\beta \partial_{x}+\alpha\right)+k \tag{3.17b}
\end{align*}
$$

where for Eqs. (3.17a,b) define

$$
\begin{gather*}
A=\left(\beta \partial_{x}+\alpha\right) \tag{3.18a}\\
B=\left(\beta \partial_{x}-\alpha-\beta^{\prime}\right) \tag{3.18b}
\end{gather*}
$$

so that

$$
\begin{equation*}
[A, B] \neq 0 \tag{3.19}
\end{equation*}
$$

Notice that

$$
\begin{align*}
& B(A B+k)=(B A+k) B \tag{3.20a}\\
& A(B A+k)=(A B+k) B \tag{3.20b}
\end{align*}
$$

Note that, for the operators multiplied by β^{2}, k simply represents a shift in the eigenvalues (spectrum) of the operators $A B$ and $B A$: this β^{2} has really changed us to quite new operators and knowing the zeros of β is very important.

EXTRA

For simplicity, consider a case of the whole interval $(-\infty, \infty)$. Suppose that the behaviour of y in Eq. (3.6a) is

$$
\begin{gather*}
y_{1}=\lim _{x \rightarrow-\infty} e^{i \omega x}=\lim _{x \rightarrow-\infty}\left(A e^{i \omega x}+B e^{-i \omega x}\right) \tag{0.1a}\\
y_{2}=\lim _{x \rightarrow-\infty} e^{-i \omega x}=\lim _{x \rightarrow-\infty}\left(C e^{i \omega x}+D e^{-i \omega x}\right) \tag{0.1b}
\end{gather*}
$$

and similarly for z in Eq. (3.6b). Then β will have the form as $x \rightarrow-\infty$

$$
\begin{align*}
\beta & =a y_{1} z_{1}+b y_{1} z_{2}+c y_{2} z_{1}+d y_{2} y_{2} \\
& \simeq e^{-2 i \omega x}+\mathrm{const}+\mathrm{const}+e^{2 i \omega x} \tag{0.2}
\end{align*}
$$

To avoid a β which oscillates, one would choose $a=d=0$. Now, as $x \rightarrow \infty, \beta$ will have the form

$$
\begin{equation*}
\beta=b\left(A e^{i \omega x}+B e^{-i \omega x}\right)\left(\tilde{C} e^{i \omega x}+\tilde{D} e^{-i \omega x}\right)+c\left(C e^{i \omega x}+D e^{-i \omega x}\right)\left(\tilde{A} e^{i \omega x}+\tilde{B} e^{-i \omega x}\right) \tag{0.3}
\end{equation*}
$$

where the tildes are associated with solutions z_{1}, z_{2} of z for Eq. (3.6b). Similarly, we require, at $\pm \infty$,

$$
\begin{align*}
& b A \tilde{C}+c C \tilde{A}=0 \tag{0.3a}\\
& b B \tilde{D}+c D \tilde{B}=0 \tag{0.3b}
\end{align*}
$$

This keeps our solutions from oscillating at $x \rightarrow \pm \infty$. Therefore

$$
\begin{equation*}
\frac{b}{c}=-\frac{C \tilde{A}}{A \tilde{C}}=-\frac{D \tilde{B}}{B \tilde{D}} \tag{0.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{C B}{A D}=\frac{\tilde{C} \tilde{B}}{\tilde{A} \tilde{D}} \tag{0.5}
\end{equation*}
$$

Looking at

$$
\begin{equation*}
1-\frac{C B}{A D}=\frac{1}{A D}=\frac{1}{\tilde{A} \tilde{D}} \tag{0.6}
\end{equation*}
$$

where, in this case, $k=1$. This implies

$$
\begin{align*}
A D & =\tilde{A} \tilde{D} \tag{0.7}\\
B C & =\tilde{B} \tilde{C} \tag{0.8}
\end{align*}
$$

These conditions help to imply that A, \tilde{A} must have the same zeros (poles) and B, \tilde{B} have the same zeros (poles); i.e., that the singular points of the scattering data correspond. Otherwise, b or c would be zero and this would mean that z_{1}, z_{2} would map to the same function y. Thus, for β to be non-oscillatory (it is useless otherwise) we must have, at least, that the singular points of the scattering data correspond. This is in fact a very restrictive condition on q, Q in Eq. (3.6a, $3.6 \mathrm{~b})$, so that useful recurrence relations can occur only in special situations. However, precisely these situations can arise in the use of inverse scattering techniques to solve non-linear (completely integrable) evolution equations, which can give multi-parameter potentials (i.e., q, Q) for linear equations with trivially related scattering data.

Finally, recall Eq. (3.13b)

$$
\left(\partial_{x x}+Q(x)\right)=\left(\partial_{x}-\frac{\alpha}{\beta}\right)\left(\partial_{x}+\frac{\alpha}{\beta}\right)+\frac{k}{\beta^{2}} .
$$

When $k=0$ we know we have a solution. Once we have this solution we can get all the solutions for y and z. Similarly, once we have only two solutions β, we can solve for everything (even though β can be shown to satisfy a fourth order differential equation!).

