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Abstract

Twelve lectures are presented for an overview of the theory and application of practical methods

to describe equilibrium and nonequilibrium properties of correlated quantum systems. The first

two lectures are presented by Dufty; the remaining ten lectures will be presented by Bonitz, Filinov,

and Balzer by teleconference.
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Lectures 1,2 : Quantum potentials for
semi-classical methods

I. OVERVIEW OF QUANTUM STATISTICAL MECHANICS AND THE CLAS-

SICAL LIMIT

A. Quantum

Key ingredients: observables (Hermitian operators {A}, states (normalized positive Her-

mitian operators {ρ}, Hamiltonian dynamics. Formulated in an N particle Hilbert space

Expectation values

〈A; ρ〉 = TrAρ, A† = A, Trρ = 1. (1)

Dynamics

〈A (t) ; ρ〉 = TrA (t) ρ = TrAρ (t) , A (t) = eLtA, ρ (t) = e−Ltρ (2)

LX =
i

~
[H, X] (3)

B. Classical

Key ingredients: observables (real phase functions {A}, states (normalized, phase

functions {ρ}, Hamiltonian dynamics. Formulated in an N particle phase space (Γ ≡
{q1, ..qN ,p1, ..pN})

Expectation values

〈A; ρ〉 =

∫
dΓA (Γ) ρ (Γ) , A+ = A,

∫
dΓρ (Γ) = 1 (4)

Dynamics

〈A (t) ; ρ〉 =

∫
dΓA (Γt) ρ (Γ) =

∫
dΓA (Γ) ρ (Γ−t) , A (t) = eLtA, ρ (t) = e−LtA (5)

LX = {H,X} =
N∑

i=1

(
∂H

∂qi

· ∂X

∂pi

− ∂H

∂pi

· ∂X

∂qi

)
(6)
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C. Classical as limit of quantum: Canonical partition function

H =
N∑

i=1

p2
i

2m
+

1

2

N∑
i,j=1

V (|qi − qi|) = K + V (7)

QN = Tre−βHN =
∑
α1

..
∑
αn

< α1, .., αN | e−βHS | α1, .., αN >

=
∑
α1

..
∑
αn

< α1, .., αN | e−βH 1

N !

(
1 +

1

2

N∑
i,j=1

(±Pij) + ..

)
| α1, .., αN >

=

∫
dq1..dqN

∑
p1

..
∑
pN

< q1..qN || p1..pN >< p1..pN | e−βHS | q1..qN > (8)

Wigner - Kirkwood expansion of the Bloch equation for U(β) =< p1..pN | e−βHS | q1..qN >

QN =
1

h3NN !

∫
dq1..dqNdp1..dpNe

−β

�PN
i=1

p2
i

2m
+ 1

2

PN
i,j=1 V (|qi−qi|)+∆(q1,..,qN )

�
(9)

β∆ (q1, ..,qN) →
(

λ

r0

)2
1

24π


∑

i,j

r2
0∇2

ijβV (|qi − qi|)−
(∑

i,j

r0∇ijβV (|qi − qi|)
)2




− ln
(
1± e−π( r

λ)
2)

+ .. (10)

These are the leading order contributions to β∆ (q1, ..,qN) for small λ/r0 where

λ ≡
(

β2π~2

m

)1/2

, r0 =





force range

n−1/3
. (11)

So the classical limit is expected for ”high” temperature and ”low” density.

Experimental second virial coefficients (low density gas) for H2, D2, and He indicate

domains for validity of T > 400, 450, 750K, respectively. Also accurate for strongly coupled

dense equilibrium fluids and solid structure at room temperatures (short ranged potentials).

What about electrons?? Need T & 105 0K. Fully ionized plasma? Still problems.
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II. ELECTRONS AND PROTONS - QUALITATIVE DIFFERENCES BETWEEN

QUANTUM AND CLASSICAL

A. Stability of matter

Classical requirement on the potential in general:

1

2

N∑
i,j=1

V (|qi − qj|) ≥ −nB, n ≥ 0 (12)

Not satisfied for system of electrons and protons due to attractive, unbounded Coulomb

interaction. Classical matter does not exist!

The corresponding required quantum operator bound is

H ≥ −nBI, n ≥ 0 (13)

This is satisfied for a system of electrons and protons (Dyson and Lenard (1968), Lieb

(1976)). Quantum matter exists!

III. EXACT MAPPINGS OF QUANTUM PARTITION FUNCTION TO A CLAS-

SICAL COUNTERPART

A. Effective many-body potential

QN = Tre−βH =

∫
dq1..dqN < q1..qN | e−βHS | q1..qN >

≡ 1

N !λ3N

∫
dq1..dqNe−βU(q1..qN ) (14)

UN(q1..qN) = −β−1 ln N !λ3N < q1..qN | e−βHS | q1..qN >

= U0 +
1

2

N∑
i,j=1

V (2) (|qi − qj|) +
1

3!

N∑

i,j,k=1

V (3) (|qi − qj| , |qk − qj|) + .. (15)

The classical representation for the quantum partition function in (14) is still exact, includ-

ing all quantum effects. However, for a Hamiltonian with pairwise additive potentials, the

effective potential U contains many-body potentials of all higher orders. Hence approxima-

tions must be used in practice that include only few body potentials.
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B. Quantum particles as classical loops (Sine-Gordon path integral representa-

tion)

Expression in terms of microscopic particle densities n(r), classical or quantum

V → 1

2

∫
drdr′n(r)V (|r− r′|) n(r′), n(r) =

N∑
i=1

δ (r− qi) . (16)

In the classical case the partition function is represented in this way in terms of the fields

n(r) instead of the particle configurations.

The classical Sine-Gordon representation is effectively an inverse functional Fourier trans-

form

e−
1
2

R
drdr′n(r)V (|r−r′|)n(r′) =

∫
D[φ]e−

1
2

R
drdr′φ(r)V −1(|r−r′|)φ(r′)e−i

R
drφ(r)n(r), (17)

and the Grand Canonical partition function becomes a path integral of the form

Ξ (β, z) =
∑
N

zNQN (β) =

∫
D[φ]eS(φ), (18)

where S(φ) is the classical action.

The corresponding quantum analysis first starts with the Feynman-Kac representation

for < q1..qN | e−βHS | q1..qN > followed by the Sine-Gordon representation (Ginibre 1971,

Alastuey et al 2008). The first step leads to the introduction of paths, whereby the point

particles are replaced by filaments with a Gaussian distribution

qi→ qi+λξi (s) , 〈ξi (s) ξj (s′)〉 = δij inf(s, s′) (1− sup(s, s′) (19)

V → 1

2

∫ 1

0

ds

∫
drdr′n(r,s)V (|r− r′|) n(r′, s), n(r) =

N∑
i=1

δ (r− qi+λξi (s)) . (20)

Exchange symmetry implies all paths for the ”filaments” ξi (s) are closed. Hence the quan-

tum partition function for particles is the same as the classical form (18).

Ξ (β, z) =

∫
D[φ]eS(φ), (21)

except that now the classical action describes loops instead of point particles.
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IV. MOTIVATION FOR SEMI-CLASSICAL REPRESENTATIONS

Why consider semi-classical representation?! Why not just solve the quantum problem?

The answer lies in addressing the many-body problem which is common to both classical and

quantum representations. Generally, if the state conditions considered do not involve a small

parameters (e.g., low density gas, nearly harmonic solid, weakly coupled quasi-particles) the

system is strongly correlated and systematic, controlled approximations are rare and limited.

However, very effective semi-phenomenological analytic methods have been developed and

tested for classical fluids over the past forty years. These include

• resummation of diagrammatic expansions

• integral equations for structure (pair distribution functions)

• perturbation theory about hard core fluids

• finite temperature, non-local density functional theory

• exactly solvable models

In addition, there are simple and accurate numerical methods that are well-developed for

classical systems, such as

• Metropolis Monte Carlo simulation

• molecular dynamics simulation and hybrid extensions

Most of these analytic and numerical methods developed for classical systems to not

extend directly to the quantum problem, without serious compromises. Molecular dynamics

is exceptionally effective for classical systems. For example, for simple atomic systems

(e.g., Argon) it describes the gas, liquid, and solid phases as well as their transitions; it

also describes transport properties in all phases, and some states far from equilibrium.

However, it is based on solving Newton’s equations and cannot be simply extended to solve

Heisenberg’s operator equations.

The exact or approximate mapping of a quantum problem to a corresonding classical

representation provides the means to access these classical methods.
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V. TWO PARTICLE QUANTUM POTENTIAL

One of the earliest definitions of a semi-classical potential incorporating quantum effects

is based on UN(q1..qN) in (15) for N = 2. The idea is to incorporate the diffraction effects

of two particles in an effective pair potential that can then be used in classical many-body

theory and molecular dynamics simulation. In particular, the short range divergence of

attractive Coulomb interactions is removed by such quantum effects, providing a well-defined

classical representation of matter (electrons and protons).

Consider a pair of particles of masses m1 and m2 and write the Hamiltonian in relative

and center of mass variables

H =
P 2

2M
+

p2

2µ
+ V (r), M = m1 + m2, µ =

m1m2

M
(22)

For N = 2 (15) becomes, in relative and center of mass coordinate representation

U2(q1,q2) = −β−1 ln λ6 < R, r | e−β

�
P2

2M
+ p2

2µ
+V (r)

�
| R, r > . (23)

The symmetrization operator S does not occur since the particles are different. Since center

of mass and relative variables commute, the center of mass contribution can be evaluated

simply

< R | e−β P2

2M | R >=
∑
P

e−β P2

2M |< R | P >|2 =
h3

Ω

∫
dPe−β P2

2M (24)

Therefore U2(q1,q2) = U2(|q1 − q2|) as expected

U2(r) = −β−1 ln

(
λ3

µ < r | e−β

�
p2

2µ
+V (r)

�
| r >

)
. (25)

where λµ is given by (1) with m replaced by the reduced mass µ.

At this point the calculation of U2(r) is reduced to that of a single particle in a central

force field. Suppose the eigenvalue problem for the reduced Hamiltonian has been solved(
p2

2µ
+ V (r)

)
ψα = εαψα. (26)

Then (25) becomes

U2(r) = −β−1 ln

(
λ3

µ

∑
α

e−βεα |ψα (r)|2
)

. (27)

This is a numerically tractable problem which has been addressed for special cases, such as

the electron - proton Coulomb Hamiltonian (Filinov, 2004). However, for practical purposes

and applications it is useful to have simpler forms from approximations. Two of these are

now discussed.
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A. Weak coupling approximation

Consider the special case of the Coulomb interaction V (r) = q1q2/r. A dimensionless

coupling constant is defined in terms of the Coulomb energy for a pair at their average

distance r0 relative to the kinetic energy

Γ =
βq1q2

r0

. (28)

Typically r0 ∼ n−1/3. For conditions such that Γ << 1 the right side of (25) can be expanded

to first order in V . This is accomplished using the identity

e
−β

�
p2

2µ
+V (r)

�
= e−β p2

2µ −
∫ β

0

dβ′e(β′−β) p2

2µ V (r) e−β′ p2

2µ + .. (29)

where the dots denote contributions of higher degree in V . Substitution into (25) and

expanding the log to leading order in V gives

U2(r) = β−1λ3
µ

∫ β

0

dβ′ < r | e(β′−β) p2

2µ V (r) e−β′ p2

2µ | r > +... (30)

This expression can be evaluated exactly with the result

U2(r) ≡
∫

dr′Π (r′) V (r− r′), Π (r) = 2
λµ

r
e−4π(r/λµ)2 . (31)

Equation (31) shows that the quantum effects are a smoothing of the original potential

over region of the size of the thermal wavelength λµ. Equation (30) shows that the origin of

these effects is the non-commutation of kinetic and potential energies. Finally, performing

the integral in (31) gives

U2 (r) =
q1q2

r
S(r), (32)

where the quantum regularization S(r) is

S(r) = 1− e−4π(r/λµ)2 − 2π
r

λµ

(
erf

(
2
√

πr/λµ

)− 1
)

(33)

The functional forms for S(r) and U2 (r) as functions of r/λµ are shown in Figure 1. The

important observations are that the modifications due to S(r) cross over to unity for r/λµ >>

1, indicating that the Coulomb form applies on large scales. Also S(r) becomes proportional

to r at short distances so the Coulomb singularity is removed.
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FIG. 1: Dependence of S(r) and U2(r) on r/λµ.

B. Degeneracy effects

To describe the effects of degeneracy, consider N identical particles (Bosons or Fermions)

of mass m interacting with a single impurity of mass m0 via a central potential V (r). The

Hamiltonian is

H =
p2

0

2m0

+
N∑

α=1

(
p2

α

2m
+ V (|qα − q0|)

)
(34)

The effective interaction of any electron with the impurity will be affected by exchange

symmetry with the remaining electrons. To simplify the discussion, assume the impurity

has infinite mass and is located at the origin. In this case the effective classical potential is

defined by

〈r|
(

e
β

�
p2

2m
+bV−µ

�
+ 1

)−1

|r〉 ≡ (2π~)−3

∫
dp

(
e

β

�
p2

2m
−µ+U(r)

�
+ 1

)−1

. (35)
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The left side is the exact quantum representation for the average density n (r) of electrons

about the impurity, while the right side defines a semi-classical form as a function of the

quantum potential U (r). The integrand of the right side is an ordinary function while the

left side involves corresponding operators. This particular definition is chosen such that

U (r) vanishes when V̂ (r) vanishes.

A weak coupling expansion of U (r) to linear order in V̂ (r) can be performed just as

above leading to the form (31) except that the smoothing function Π (r′) is more complex,

including the degeneracy effects. The resulting expression for U (r) is found to be

U (r) =
q1q2

r
S(r), (36)

S(r) → 8r

λ

∂ ln z

∂ (nλ3)

∫ ∞

0

dxx
1

z−1ex2 + 1

(
λ

4
√

πxr

(
1− cos

(
x4
√

πr/λ
))

+

(
1

2
π − Si

(
x4
√

πr/λ
)))

.

(37)

It is easily verified that (33) is recovered in the non-degenerate limit (z << 1). In the

opposite limit of very strong degeneracy the quantum modifications of S(r) are shown in

Figure 2 As in the non-degenerate case S(r) is linear at small r showing that the classical

Coulomb divergence is removed. It crosses over to unity at large r, recovering the Coulomb

form at large scales. However, there are now oscillations in the crossover domain (Friedel

oscillations).

C. Variational approximation (Feynman-Kleinert)

Consider again the two particle partition function without degeneracy. A nonperturbative

approximation for U2(r) was introduced by Feynman and Kleinert (1986). The basic idea

is to use a variational principle. They reformulate the above in terms of the two particle

partition function in the Feynman-Kac path integral representation

Q2 =

∫
dr < r | e−β

�
p2

2µ
+V (r)

�
| r >=

∫
D[x(τ)] exp

{
−1

h
A [x(τ)]

}
(38)

where the action A [x(τ)] is

A [x(τ)] =
1

~

∫ ~β

0

dτ
[µ

2

·
x

2
(τ) + V (x(τ))

]
(39)

The paths x(τ) can be written as their average values plus the deviation from these averages

x(τ) = x0 + δx(τ), x0 =
1

~β

∫ ~β

0

dτx(τ), (40)
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FIG. 2: Dependence of S(r) and U(r) on scaled distance for z = 106.

so that (38) can be written as an ordinary integral over x0 and a functional integral over

the deviation paths

Q2 =

∫
dx0

∫
D′[x(τ)] exp

{
−1

h
A [x0 + δx(τ)]

}
= λ−3

µ

∫
dre−βU2(r)

Rewrite this by dividing A [x(τ)] into a simple reference part A0 [x(τ)] and its remainder

A1 [x(τ)]

Q2 =

∫
D[x(τ)] exp

{
−1

~
A0 [x(τ)]

}
exp

{
−1

~
A1 [x(τ)]

}

= Q
(0)
2

〈
exp

{
−1

~
A1 [x(τ)]

}〉(0)

, (41)

Where 〈X〉(0) means

〈X〉(0) =
1

Q
(0)
2

∫
D[x(τ)] exp

{
−1

~
A0 [x(τ)]

}
X (42)
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Q
(0)
2 =

∫
D[x(τ)] exp

{
−1

~
A0 [x(τ)]

}
(43)

From the convexity of ex it follows that

Q2 ≥ Q
(0)
2 exp

{
−1

~
〈A1 [x(τ)]〉(0)

}
, (44)

Then, by an appropriate parameterized choice for A0 [x0 + δx(τ)] such that the calculations

for the reference action can be done exactly, the right side of (44) can be optimized to give

a good approximation for U2(r). For the details, refer to the original paper of Feynman and

Kleinert (1986).

D. Phenomenological optimization of the weak coupling form

Consider again the weak coupling approximation for U2(r) given by (32) and (33)

U2(r) = −β−1 ln

(
λ3

µ

∑
α

e−βεα |ψα (r)|2
)

→ q1q2

r

[
1− e−4π(r/λµ)2 − 2π

r

λµ

(
erf

(
2
√

πr/λµ

)− 1
)]

(45)

The exact value of U2(0) = −β−1 ln
(
λ3

µ

∑
α e−βεα |ψα (0)|2) is known, and can be incorpo-

rated by parameterizing the weak coupling form to give and improved result

U2(r) → q1q2

r

[
1− e−4π(r/λµ)2 − 2πγ

r

λµ

(
erf

(
2
√

πr/γλµ

)− 1
)]

, (46)

with

γ =
2πq1q2

λµU2(0)
. (47)

This inclusion of the exact (all orders in V ) property U2(0) in the functional form (45)

improves the quantitative prediction over all values for r signifiicantly. Applications of this

potential to Hydrodgen using molecular dynamics will be illustrated in later lectures by

Bonitz.

VI. WAVE PACKET MOLECULAR DYNAMICS

All of the above relationship between classical and quantum descriptions has been based

on equilibrium properties, mainly the partition function and its representations. The re-

sulting potentials of the last section are characterized by quantum effects measured through
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the thermal wavelength λ. However, in many cases it is of interest to use classical meth-

ods for nonequilibrium properties and associated quantum potentials not prejudiced to the

equilibrium state are desired. One approach to this problem is provided by the method of

wavepacket molecular dynamics.

To simplify the discussion consider a single electron in the presence of a fixed ion with

charge number Z. The expectation value of an operator depending only on the position and

momentum coordinates can be expressed in terms of its Weyl representation

〈A(r̂, p̂)〉 = (2π)−6

∫
dλdηÃcl(λ, η)

〈
ei(λ·br+η·bp)

〉

=

∫
drdpAcl(r,p) (2π)−6

∫
dλdηA

〈
ei(λ·(br−r)+η·(bp−p))

〉

=

∫
drdpAcl(r,p)P (r,p) . (48)

Here Acl(r,p) is the classical phase function associated with the operator A(r̂, p̂) and

Ãcl(λ, η) is its Fourier transform. The last line of (48) expresses the expectation value

as a classical average over the ”probability density P (r,p)

P (r,p) = (2π)−6

∫
dλdη

〈
ei(λ·(br−r)+η·(bp−p))

〉

= (2π)−6

∫
dλdηe

i
2
i~λ·η 〈

eiλ·(br−r)eiη·(bp−p)
〉
. (49)

This is not a complete correspondence between classical and quantum descriptions, since it

can be shown that P (r,p) is not positive definite. In later lectures, this will be related to

the Wigner function representation of quantum mechanics.

For a pure state ψ(r)

P (r,p) = (2π)−6

∫
dλdηe

i
2
i~λ·η

∫
dr′ψ∗(r′)eiλ·(br−r)eiη·(bp−p)ψ(r′). (50)

A special case is given by the Gaussian wavepacket ψ(r | x)

ψ(r | x) =

(
2a

π

)3/4

exp

[
−

(
a +

i

~
b

)
(r− r0)

2 − i

~
p0 · (r− r0)

]
(51)

where x denotes the set of parameters {a, b, r0,p0}. It is easily verified that the parameters

r0 and p0 are the expectation values for the position and momentum of the electron, respec-

tively. The additional parameters characterized the width and its rate of change. A more

general mixed state is given by

P (r,p) = (2π)−6

∫
dλdηe

i
2
i~λ·ηTrρeiλ·(br−r)eiη·(bp−p), (52)
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where ρ is the density matrix

ρ =

∫
dxf(x)Pψ(r|x), (53)

and Pψ(r|x) is the projection onto ψ (r | x).

As a practical approximation assume that the form of ψ(r | x) in (51) is preserved in

time

ψ(r | x) → ψ(r | x(t)), (54)

where the time dependence of the parameters x(t) is determined from the variational prin-

ciple

δ 〈(i~∂t −H)〉ψ(r|x) = 0. (55)

The resulting set of equations are similar to classical Hamilton’s equations

·
r0 = ∇p0Heff ,

·
p0 = −∇r0Heff ,

·
a = ∇bHeff ,

·
b = −∇aHeff

Heff =
p2

0

2m
+

3a2

2m

(
b2 + 1

)
+ Veff , Veff = −Ze2

r0

erf (r0/a)

The differences here are an effective ion-electron potential that removes the Coulomb sin-

gularity within a distance of a, and an expanded phase space to include the width of the

packet a and its conjugate momentum b,

Further details of these approach and a recent application to Hydrogen can be found in

Jacob et al (2007).

VII. ORBITAL FREE DENSITY FUNCTIONAL THEORY

A final application of semi-classical representations for quantum systems occurs in ”orbital

free” density functional theory. Consider a quantum system in the presence of external

sources that can be described by an additive potential

V̂ =
N∑

i=1

V (qi) =

∫
drV (r)n̂(r), (56)

where n̂(r) is the number density operator as in (16).The details of the remainder of the

Hamiltonian are not important at this point. The theorems of density functional theory

apply in the following form. First, a functional of the average density ne(r) =< n̂(r) >,
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FIG. 3: Dependence of S(r) = erf(r) and U(r) on r/a

averaged over an equilibrium grand canonical ensemble, is constructed in two steps. First,

the equilibrium grand potential for the system is considered formally

βΩe = − ln Tr e−β(H−µN). (57)

The density is obtained (formally) by functional differentiation with respect to the potential

Ωe = Ωe (µ− V ) , ne (r) = − δΩe

δ [µ− V (r)]
. (58)

The density equation is inverted (formally) to get the external potentials as a functional of

the average density

Vα = Vα(r | ne), (59)

and a Legendre transformation is performed to construct the free energy as a functional of

the densities rather than the chemical potentials

F (neα) = Ωe (µ− V) +

∫
dr [µ− V (r |ne)] ne (r) . (60)
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The crucial second step is to extend this functional to arbitrary density fields

F ({ne}) → F ({n}). (61)

The main task of density functional theory is now to construct the density functional

ΩV (n) ≡ F (n)−
∫

dr (µ− V (r)) n (r) , (62)

where, in this definition, V (r) is not considered to be a functional of the density. The main

theorem of density functional theory is then that this functional has an extremum at the

equilibrium density

δΩV (n)

δn
= 0 =

δF (n)

δn
− [µ− V (r)] , ⇒ n = ne. (63)

Furthermore the value of the functional at the equilibrium density is clearly the equilibrium

grand potential ΩV (n) = Ω (µ− V). In practice, an approximate free energy functional

F ({n}) is written and Eq. (63) is solved to obtain the equilibrium density. This den-

sity is then used to evaluate the equilibrium grand potential and determine all equilibrium

thermodynamic properties.

How should the functional F (n) be constructed? There is clearly a part associated with

an ideal gas, and an energy due to the direct Coulomb interactions. In addition there are the

more difficult parts due to exchange and correlations. Consequently, it has become standard

practice to write the free energy as

F [n] = F (0)(n) +
1

2

∫
drdr′Vc(r− r′)n(r)n(r′) + Fxc(n), (64)

where F (0)(n) is the free energy for the non-interacting system, the second term is the contri-

bution from the direct Coulomb interaction, and Fxc(n) denotes the remaining contributions

due to interactions from exchange and correlations. Then the extrememum condition (9)

becomes

V(0) (r |n) = V (r) +

∫
drdr′V (r− r′)n (r′) +

δFxc (n)

δnα (r)
, (65)

with V(0)(r | n) denoting the functional (59) for the non-interacting system. Determination

of this functional is the central issue of the discussion here, and is closely related to the

quantum potentials above.

Traditionally, (65) is converted into an equivalent Kohn-Sham self-consistent effective

single particle Schroedinger equations which are solved for the orbitals ψi (r), and the density
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is constructed from them and the associated eigenvalues according to

n (r) = 〈r|
(

e
β

�
p2

2m
+bV−µ

�
+ 1

)−1

|r〉 =
∑

i

(
eβ(εi−µ) + 1

)−1 |ψi (r)|2 . (66)

This avoids the difficult problem of finding the functional V(0)
α (r | n) but at the cost of

having to solve a set of self-consistent Schrodinger equations. An alternative approach

(”orbital free”) attempts to construct the functional V(0)(r | n) directly.The definition of

the functional V(0)(r | n) is straightforward from the representation of the density for the

non-interacting system in the external potentials

n (r) = 〈r|
(

e
β

�
p2

2m
+bV−µ

�
+ 1

)−1

|r〉 (67)

which is just the left side of (35). This must be inverted to find V(0)(r | n).

The inversion can be done in two steps, in terms of the quantum potential defined by

(35). First the latter is solved to give U(r) as a functional of V (r). Then (35) defines the

functional relationship of U(r | V ) to n(r)

n(r) ≡
∫

dp

(2π~)3

(
e

β

�
p2

2m
+U(r|V )−µ

�
+ 1

)−1

. (68)

This is just the well-known ideal gas relationship of the chemical potential to the density.

Thus, the determination of V(0)(r | n) is seen to be effectively the same as that of determin-

ing the quantum potential U(r | V ). Once this is accomplished, (65) becomes a classical

nonlinear integral equation for the density, without the need to solve the Kohn-Sham equa-

tions.

It is instructive to consider the non-degenerate limit. In that case the polarization func-

tion is evaluated using F0 (p) → e
−β

�
p2

2m
−µ

�
. Furthermore, Eq. (68) simplifies to

n (r) = ne−βU(r), (69)

and the weak coupling quantum potential is

U (r′) =

∫
dr′ π (r′)V(0) (r− r′) . (70)

Use of these in the DFT equation (65) gives the closed equation for the densities

ln
n (r)

n
= −βV (r)− β

∫
drdr′ V c(r− r′)n (r′) +

∫
dr′π (r− r′)

δFxc ({n})
δn (r′)

. (71)
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The potentials V (r) and V c(r− r′) are “regularized” by the polarization function, e.g.,

V (r) =

∫
dr′π (r′) V (r− r′) . (72)

In the weak coupling limit where Fxc ({n}) can be neglected (65) becomes the usual

Boltzmann-Poisson equation with effective quantum potentials given by (33).
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