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What is Kiel?

Figure: Picture of the Kieler Woche 2008
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What is Kiel?

Figure: Dominik Klein from the Handball club THW Kiel
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Introduction

The term Monte Carlo simulation denotes any simulation which utilizes random
numbers in the simulation algorithm.

Figure: Picture of the Casino in Monte-Carlo



Monte-Carlo integration Markov chains and the Metropolis algorithm Ising model Conclusion

Advantages to use computer simulations

Simulations provide detailed information on model systems.

Possibility to measure quantities with better statistical accuracy than in an
experiment.

Check for analytical theories without approximations.

MC methods have a very broad field of applications in physics, chemistry,
biology, economy, stock market studies, etc.
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Hit-or-Miss Monte Carlo: Calculation of π

One of the possibilities to calculate the value of π
is based on the geometrical representation:

π =
4× πR2

(2R)2
=

4× Area of a circle

Area of enclosing square
.

Choose points randomly inside the square. Then to compute π use:

4× Area of a circle

Area of enclosing square
' 4× Number of points inside the circle

Total number of points
.
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Volume of the m-dimensional hypersphere

m Exact

2 3.1415
3 4.1887
4 4.9348
5 5.2637
6 5.1677
7 4.7247
8 4.0587

Exact result:

V md = πm/2r m/Γ(m/2 + 1)
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Volume of the m-dimensional hypersphere

m Exact quad. time result

2 3.1415 0.00 3.1296
3 4.1887 1.0 · 10−4 4.2071
4 4.9348 1.2 · 10−3 4.9657
5 5.2637 0.03 5.2863
6 5.1677 0.62 5.2012
7 4.7247 14.9 4.7650
8 4.0587 369 4.0919

Exact result:

V md = πm/2r m/Γ(m/2 + 1)

V 3d = 2

Z
x2+y2≤r2

dx dy z(x , y)

Integral presentation: sum of the
volumes of parallelepipeds with the base
dx dy and height

r 2 = x2 + y 2 + z2

→ z(x , y) =
p

r 2 − (x2 + y 2)
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Volume of the m-dimensional hypersphere

m Exact quad. time result MC time result

2 3.1415 0.00 3.1296 0.07 3.1406
3 4.1887 1.0 · 10−4 4.2071 0.09 4.1907
4 4.9348 1.2 · 10−3 4.9657 0.12 4.9268
5 5.2637 0.03 5.2863 0.14 5.2710
6 5.1677 0.62 5.2012 0.17 5.1721
7 4.7247 14.9 4.7650 0.19 4.7182
8 4.0587 369 4.0919 0.22 4.0724

Exact result:

V md = πm/2r m/Γ(m/2 + 1)

Monte-Carlo integration
m-dimensional vectors
x = (x1, x2, . . . , xm) are sampled in
volume V = (2r)m,

V m·d ≈ V

K

KX
i=1

f (xi )Θ(xi ),

Θ(x) = 1 if (x · x) ≤ r 2.
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Monte Carlo integration

Straightforward sampling

Random points {xi} are choosen
uniformly

I =

Z b

a

f (x)dx ≈ b − a

K

KX
i=1

f (xi )

Importance sampling

{xi} are choosen with the probability
p(x)

I =

Z b

a

f (x)

p(x)
p(x)dx ≈ 1

K

KX
i=1

f (xi )

p(xi )



Monte-Carlo integration Markov chains and the Metropolis algorithm Ising model Conclusion

Optimal importance sampling

How to choose p(x) to minimize the error of the integral

I ≈ 1

K

KX
i=1

f (xi )

p(xi )
±
r
σ2[f /p]

K
σ2(x) =

1

K

KX
i=1

(xi − x̄)2

Solve optimization problem:

min

"„
f (x)

p(x)

«2
#

=

Z
Q

f (x)2

p(x)2
p(x)dx =

Z
Q

f (x)2

p(x)
dx = min,

Z
Q

p(x)dx = 1.

Extremum conditions:Z
Q

f (x)2

p(x)2
δp(x)dx = 0 and

Z
Q

δp(x)dx = 0.

⇒ Sampling probability should reproduce peculiarities of |f (x)|. Solution:
p(x) = c · f (x).
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Statistical Mechanics

Consider an average of observable Â in the canonical ensemble (fixed (N,V ,T )).
The probability that a system can be found in an energy eigenstate Ei is given by a
Boltzmann factor (in thermal equilibrium)

Ā = 〈A〉(N,V , β) =

P
i e−Ei/kBT 〈i |Â|i〉P

i e−Ei/kBT
(1)

where 〈i |Â|i〉 – expectation value in N-particle quantum state |i〉.

Direct way to proceed:

Solve the Schrödinger equation for a many-body systems.

Calculate for all states with non-negligible statistical weight e−Ei/kBT the
matrix elements 〈i |Â|i〉

.

This approach is unrealistic! Even if we solve N-particle Schrödinger equation
number of states which contribute to the average would be astronomically large,

e.g. 101025

!

We need another approach! Equation (1) can be simplified in classical limit.
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where 〈i |Â|i〉 – expectation value in N-particle quantum state |i〉.

Direct way to proceed:

Solve the Schrödinger equation for a many-body systems.

Calculate for all states with non-negligible statistical weight e−Ei/kBT the
matrix elements 〈i |Â|i〉.
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Problem statement

Obtain exact thermodynamic equilibrium configuration

R = (r1, r2, . . . , rN )

of interacting particles at given temperature T , particle number, N, external
fields etc.

Evaluate measurable quantities, such as total energy E , potential energy V ,
pressure P, pair distribution function g(r), etc.

〈A〉(N, β) =
1

Z

Z
dR A(R) e−βV (R), β = 1/kB T .
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Monte Carlo approach

Approximate a continuous integral by a sum over set of configurations { xi }
sampled with the probability distribution p(x).Z

f (x) · p(x) dx = lim
M→∞

1

M

MX
i=1

f (xi )p = lim
M→∞

〈f (x)〉p

We need to sample with the given Boltzmann probability,
pB (Ri ) = e−βV (Ri )/Z ,

〈A〉 = lim
M→∞

1

M

X
i

A(Ri ) pB (Ri ) = lim
M→∞

〈A(R)〉pB
.

Direct sampling with pB is not possible due to the unknown normalization Z .

Solution: Construct Markov chain using the Metropolis algorithm.

Use Metropolis Monte Carlo procedure (Markov process) to
sample all possible configurations by moving individual particles.
Compute averages from fluctuating microstates. more
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Metropolis sampling method (1953)

1 Start from initial (random) configuration R0.

2 Randomly displace one (or more) of the particles.

3 Compute energy difference between two states:
∆E = V (Ri+1)− V (Ri ).

4 Evaluate the transition probability which satisfies the
detailed balance:

υ(Ri ,Ri+1) =
pB (Ri+1)

pB (Ri )
= min

h
1, e−β∆E

i

∆E ≤ 0 : always accept new configuration.
∆E > 0 : accept with prob. p = e−β∆E

5 Repeat steps (2)–(4) to obtain a final estimation:
Ā = 〈A〉 ± δA, with the error: δA =

p
τAσ2

A/M.

We reduce a number sampled configurations to M ∼ 106 . . . 108.

We account only for configurations with non-vanishing weights: e−βV (Ri ).
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Simulations of 2D Ising model

Figure: Lattice spin
model with nearest
neighbor interaction. The
red site interacts only
with the 4 adjacent
yellow sites.

We use the Ising model to demonstrate the
studies of phase transitions.

The Ising model considers the interaction of
elementary objects called spins which are
located at sites in a simple, 2-dimensional
lattice,

Ĥ = −J
NX

i,j=nn(i)

Ŝi Ŝj − µ0B
NX

i=1

Ŝi .

Magnetic ordering:

J > 0: lowest energy state is
ferromagnetic,
J < 0: lowest energy state is
antiferromagnetic.
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Equibrium properties

Mean energy 〈E〉 = Tr Ĥ ρ̂,

Heat capacity C =
∂ 〈E〉
∂T

=
1

kBT 2

“
〈E 2〉 − 〈E〉2

”
,

Mean magnetization 〈M〉 =

*˛̨̨̨
˛

NX
i=1

Si

˛̨̨̨
˛
+
,

Linear magnetic susceptibility χ =
1

kBT

“
〈M2〉 − 〈M〉2

”
,

where 〈M〉 and 〈M2〉 are evaluated at zero magnetic field (B = 0).
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Magnetization in 2D Ising model (J > 0, L2 = 642)

   

Magnetization in 2D Ising model: L x L=64x64

T=2.0
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Magnetization in 2D Ising model (J > 0, L2 = 642)

   

Magnetization in 2D Ising model: L x L=64x64

T=2.30
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Magnetization in 2D Ising model (J > 0, L2 = 642)

   

Magnetization in 2D Ising model: L x L=64x64

T=2.55
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Magnetization in 2D Ising model (J > 0, L2 = 642)

   

Magnetization in 2D Ising model: L x L=64x64

T=3.90
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Straightforward implementation

In each step we propose to flip a single spin, Si → −Si , and use the original
Metropolis algorithm to accept or reject.

Phase-odering kinetics if we start from completely disordered state.

T > Tc Equilibration will be fast.

T < Tc Initial configuration is far from typical equilibrium state. Parallel
spins form domains of clusters. To minimize their surface energy, the
domains grow and straighten their surface.

For T < Tc it is improbable to switch from one magnetization to the other, since
acceptance probability to flip a single spin in a domain is low e−4J∆σ, ∆σ = ±2.

We need to work out more efficient algorithm.
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Simulations in critical region

Autocorrelation function near critical
temperature Tc :

A(i)→ A0 exp (−i/t0)|i→∞

“Critical slowing down”

t0 ≈ τO,int ∼ Lz

z – dynamical critical exponent of the
algorithm. more

For the original single spin-flip alrogithm z ≈ 2 in 2D.

L = 103 ⇒ τO,int ∼ 105 . . . 106
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Classical cluster algorithms

Original idea by Swendsen and Wang and later slightly modified by Niedermayer
and Wolf. more

1 Look at all n.n. of spin σI and if they
point in the same direction include them
in the cluster C with the probability Padd.

2 For each new spin added to C repeat the
same procedure.

3 Continue until the list of n.n is empty.

4 Flip all spins in C simultaneously with
probability A.
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Spin-spin correlation.

   

Spinspin correlation function.
Correlation length

T=2.0 T=2.30 T=2.55

T , L ∝∣T−T c∣
−1
≤L /2

c r ∝e−r / T 

c r =〈s i⋅sir 〉−〈s i〉 〈sir 〉/〈si
2
〉

T 
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L dependence: Magnet., suscep., energy, spec. heat

   

System size Ldependence:
magnetization  susceptibility

energy  specific heat 

T ∝∣T−T c∣
−7 / 4

L∞

m T ∝∣T c−T∣
1/8

L∞

C L ,T c∝C 0 ln L

m T =0
TT c

T≤T c
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Finite size scaling and critical properties.

   

Finite size scaling and critical properties

Numerical estimation 
for critical temperature: k T c

est L=∞/ J=2.2719±0.008

Exact value: k T cL=∞/ J=2 / ln 12 ≈2.26918

T cL 
T c L =T c L=∞a L−1

T , L ∝∣T−T c∣
−1
≤L /2
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When/Why should one use classical Monte Carlo?

Advantages

1 Easy to implement.

2 Easy to run a fast code.

3 Easy to access equilibrium properties.

Disadvantages

1 Non-equilibrium properties are not accessible (→ Dynamic Monte Carlo).

2 No real-time dynamics information (→ Kinetic Monte Carlo).

Requirements

1 Good pseudo-random-number generator, e.g. Mersenne Twister (period
219937 − 1).

2 Efficient ergodic sampling.

3 Accurate estimations of autocorrelation times, statistical error, etc.
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Fin

Thanks for your attention!

Next lecture: Monte Carlo algorithms for quantum systems
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Markov chain (Markov process) back

The Markov chain is the probabilistic analogue of a trajectory generated by the
equations of motion in the classical molecular dynamics.

We specify transition probabilities υ(Ri ,Ri+1) from one state Ri to a new
state Ri+1 (different degrees of freedom in the system).

We put restrictions on υ(Ri ,Ri+1):

1 The conservation law (the total probability that the system will
reach some state Ri is unity):

∑
Ri+1

υ(Ri ,Ri+1) = 1, for all Ri .
2 The distribution of Ri converges to the unique equilibrium state:∑

Ri
p(Ri )υ(Ri ,Ri+1) = p(Ri+1).

3 Ergodicity: The transition is ergodic, i.e. one can move from any
state to any other state in a finite number of steps with a nonzero
probability.

4 All transition probabilities are non-negative: υ(Ri ,Ri+1) ≥ 0, for
all Ri .

In thermodynamic equilibrium, dp(R)/dt = 0, we impose an additional
condition – the detailed balance

p(Ri )υ(Ri ,Ri+1) = p(Ri+1)υ(Ri+1,Ri ),
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Ergodicity

In simulations of classical systems we need to consider only configuration
integral

Qclass
NVT = Tr

h
e−βĤ

i
=

1

N!

„
2πmkB T

h2

«3N/2 Z
drN e−βV (rN )

The average over all possible microstates {rN} of a system is called ensemble
average.

This can differ from real experiment: we perform a series of measurements
during a certain time interval and then determine average of these
measurements.
Example: Average particle density at spatial point r

ρ̄(r) = limt→∞
1

t

tZ
0

dt′ ρ(r, t′; rN (0), pN (0))



Appendix

Ergodicity

System is ergodic: the time average does not depend on the initial
conditions.
→ We can perform additional average over many different initial conditions
(rN (0), pN (0))

ρ̄(r) =
1

N0

X
N0

limt→∞
1

t

tZ
0

dt′ ρ(r, t′; rN (0), pN (0))

N0 is a number of initial conditions: same NVT , different rN (0), pN (0).

ρ̄(r) = 〈ρ(r)〉NVE time average = ensemble average

Nonergodic systems: glasses, metastable states, etc.
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Autocorrelations back

Algorithm efficiency can be characterized by the integrated autocorrelation time
τint and autocorrelation function A(i):

τO,int = 1/2 +
KX

i=1

A(i) (1− i/K), A(i) =
1

σ2
O

〈O1O1+i 〉 − 〈O1〉〈O1+i 〉.

Temporal correlations of measurements enhance the statistical error:

εŌ =
q
σ2

Ō
=

r
〈O2

i 〉 − 〈Oi 〉2
K

p
2τO,int =

s
σ2

Oi

Keff
, Keff = K/2τO,int .
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Detailed balance for cluster algorithms back

Detailed balance equation

(1− Padd)Kν Pacc(ν → ν′)e−βEν = (1− Padd )Kν′ Pacc (ν′ → ν)e−βEν′

Probability to flip all spins in C :

A =
Pacc(ν → ν′)

Pacc(ν′ → ν)
= (1− Padd)Kν′−Kν e2J β (Kν′−Kν )

If we choose Padd = 1− e−2 J β ⇒ A = 1, i.e every update is accepted.

T � Tc : Padd → 0, only few spins in C (efficiency is similar to the single
spin-flip)

T ≤ Tc : Padd → 1, we flip large spin domains per one step.

Wolf algorithm reduces the dynamical critical exponent to z ≤ 0.25. Enormous
efficiency gain over the single spin-flip!
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