Monte-Carlo integration	Markov chains and the Metropolis algorithm	Ising model	Conclusion

Introduction to classical Metropolis Monte Carlo

Alexey Filinov, Jens Böning, Michael Bonitz

Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany

November 10, 2008

Monte-Carlo integration	Markov chains and the Metropolis algorithm	lsing model 000000000	Conclusion 00
Where is Kiel?			

Figure: Kiel

Markov chains and the Metropolis algorithm

lsing model

Conclusion 00

Where is Kiel?

Figure: Kiel

Monte-Carlo	integration

Markov chains and the Metropolis algorithm $_{\rm OOOO}$

lsing model 000000000 Conclusion 00

What is Kiel?

Figure: Picture of the Kieler Woche 2008

Markov chains and the Metropolis algorithm $_{\rm OOOO}$

Ising model

Conclusion 00

What is Kiel?

Figure: Dominik Klein from the Handball club THW Kiel

Monte-Carlo integration	Markov chains and the Metropolis algorithm 0000	lsing model 000000000	Conclusion
Outline			

- Introduction
- Monte-Carlo integration

Markov chains and the Metropolis algorithm Markov chains

Monte-Carlo integration	Markov chains and the Metropolis algorithm	lsing model	Conclusion
●00000		000000000	00
Introduction			

The term *Monte Carlo simulation* denotes any simulation which utilizes random numbers in the simulation algorithm.

Figure: Picture of the Casino in Monte-Carlo

Monte-Carlo integration	Markov chains and the Metropolis algorithm	lsing model	Conclusion
0●0000		000000000	00
Advantages to	use computer simulations		

• Simulations provide detailed information on model systems.

• Possibility to measure quantities with better statistical accuracy than in an experiment.

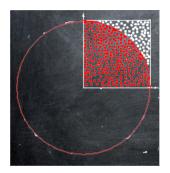
• Check for analytical theories without approximations.

• MC methods have a very broad field of applications in physics, chemistry, biology, economy, stock market studies, etc.

 Monte-Carlo integration
 Markov chains and the Metropolis algorithm
 Ising model
 Conclusion

 OO
 0000
 00000000
 00

Hit-or-Miss Monte Carlo: Calculation of π



One of the possibilities to calculate the value of π is based on the geometrical representation:

$$\pi = \frac{4 \times \pi R^2}{(2R)^2} = \frac{4 \times \text{Area of a circle}}{\text{Area of enclosing square}}$$

Choose points randomly inside the square. Then to compute π use:

 $\frac{4\times \text{Area of a circle}}{\text{Area of enclosing square}} \simeq \frac{4\times \text{Number of points inside the circle}}{\text{Total number of points}}$

Monte-Carlo integration	Markov chains and the Metropolis algorithm	Ising model	Conclusion
000000	0000	00000000	00

Volume of the *m*-dimensional hypersphere

т	Exact
2	3.1415
3	4.1887
4	4.9348
5	5.2637
6	5.1677
7	4.7247
8	4.0587

Exact result:

$$V^{md} = \pi^{m/2} r^m / \Gamma(m/2+1)$$

Volume of the *m*-dimensional hypersphere

т	Exact	quad. time	result
2	3.1415	0.00	3.1296
3	4.1887	$1.0\cdot 10^{-4}$	4.2071
4	4.9348	$1.2 \cdot 10^{-3}$	4.9657
5	5.2637	0.03	5.2863
6	5.1677	0.62	5.2012
7	4.7247	14.9	4.7650
8	4.0587	369	4.0919

Exact result:

$$V^{md} = \pi^{m/2} r^m / \Gamma(m/2 + 1)$$

$$V^{3d} = 2 \int_{x^2 + y^2 \le r^2} dx \, dy \, z(x, y)$$

Integral presentation: sum of the volumes of parallelepipeds with the base dx dy and height

$$r^{2} = x^{2} + y^{2} + z^{2}$$

$$\rightarrow z(x, y) = \sqrt{r^{2} - (x^{2} + y^{2})}$$

Monte-Carlo integration	Markov chains and the Metropolis algorithm	Ising model	Conclusion
000000	0000	00000000	00

Volume of the *m*-dimensional hypersphere

m	Exact	quad. time	result	MC time	result
2	3.1415	0.00	3.1296	0.07	3.1406
3	4.1887	$1.0\cdot10^{-4}$	4.2071	0.09	4.1907
4	4.9348	$1.2 \cdot 10^{-3}$	4.9657	0.12	4.9268
5	5.2637	0.03	5.2863	0.14	5.2710
6	5.1677	0.62	5.2012	0.17	5.1721
7	4.7247	14.9	4.7650	0.19	4.7182
8	4.0587	369	4.0919	0.22	4.0724

Exact result:

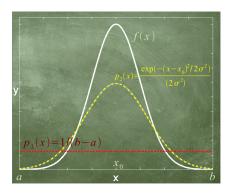
$$V^{md} = \pi^{m/2} r^m / \Gamma(m/2 + 1)$$

Monte-Carlo integration *m*-dimensional vectors $\mathbf{x} = (x_1, x_2, \dots, x_m)$ are sampled in volume $V = (2r)^m$,

$$V^{m \cdot d} pprox rac{V}{K} \sum_{i=1}^{K} f(\mathbf{x}_i) \Theta(\mathbf{x}_i),$$

 $\Theta(\mathbf{x}) = 1 \text{ if } (\mathbf{x} \cdot \mathbf{x}) \leq r^2.$

Monte-Carlo integration	Markov chains and the Metropolis algorithm 0000	lsing model 000000000	Conclusion
Monte Carlo ir	Itegration		



Straightforward sampling

Random points $\{x_i\}$ are choosen uniformly

$$I = \int_{a}^{b} f(x) dx \approx \frac{b-a}{K} \sum_{i=1}^{K} f(x_i)$$

Importance sampling

 $\{x_i\}$ are choosen with the probability p(x)

$$I = \int_{a}^{b} \frac{f(x)}{p(x)} p(x) dx \approx \frac{1}{K} \sum_{i=1}^{K} \frac{f(x_i)}{p(x_i)}$$

Monte-Carlo integration	Markov chains and the Metropolis algorithm	lsing model	Conclusion
○○○○○●		000000000	00
Optimal import	tance sampling		

How to choose p(x) to minimize the error of the integral

$$I \approx \frac{1}{K} \sum_{i=1}^{K} \frac{f(x_i)}{p(x_i)} \pm \sqrt{\frac{\sigma^2[f/p]}{K}} \qquad \qquad \sigma^2(x) = \frac{1}{K} \sum_{i=1}^{K} (x_i - \bar{x})^2$$

Solve optimization problem:

$$\min\left[\left(\frac{f(x)}{p(x)}\right)^2\right] = \int_Q \frac{f(x)^2}{p(x)^2} p(x) dx = \int_Q \frac{f(x)^2}{p(x)} dx = \min, \quad \int_Q p(x) dx = 1.$$

Extremum conditions:

$$\int_{Q} \frac{f(x)^{2}}{p(x)^{2}} \,\delta p(x) dx = 0 \qquad \text{and} \qquad \int_{Q} \delta p(x) dx = 0.$$

⇒ Sampling probability should reproduce peculiarities of |f(x)|. Solution: $p(x) = c \cdot f(x)$.

Monte-Carlo integration	Markov chains and the Metropolis algorithm	lsing model	Conclusion
	●೦೦೦	000000000	00
Statistical Me	echanics		

Consider an average of observable \hat{A} in the canonical ensemble (fixed (N, V, T)). The probability that a system can be found in an energy eigenstate E_i is given by a Boltzmann factor (in thermal equilibrium)

$$\bar{A} = \langle A \rangle (N, V, \beta) = \frac{\sum_{i} e^{-E_{i}/k_{\rm B}T} \langle i | \hat{A} | i \rangle}{\sum_{i} e^{-E_{i}/k_{\rm B}T}}$$
(1)

where $\langle i | \hat{A} | i \rangle$ – expectation value in *N*-particle quantum state $|i\rangle$.

Monte-Carlo integration	Markov chains and the Metropolis algorithm	lsing model	Conclusion
000000	●000	000000000	00
Statistical Me	echanics		

Consider an average of observable \hat{A} in the canonical ensemble (fixed (N, V, T)). The probability that a system can be found in an energy eigenstate E_i is given by a Boltzmann factor (in thermal equilibrium)

$$\bar{A} = \langle A \rangle (N, V, \beta) = \frac{\sum_{i} e^{-E_{i}/k_{\rm B}T} \langle i | \hat{A} | i \rangle}{\sum_{i} e^{-E_{i}/k_{\rm B}T}}$$
(1)

where $\langle i | \hat{A} | i \rangle$ – expectation value in *N*-particle quantum state $| i \rangle$.

Direct way to proceed:

- Solve the Schrödinger equation for a many-body systems.
- Calculate for all states with non-negligible statistical weight e^{-E_i/k_BT} the matrix elements (i|Â|i).

Monte-Carlo integration	Markov chains and the Metropolis algorithm	lsing model	Conclusion
	●೦೦೦	000000000	00
Statistical M	echanics		

Consider an average of observable \hat{A} in the canonical ensemble (fixed (N, V, T)). The probability that a system can be found in an energy eigenstate E_i is given by a Boltzmann factor (in thermal equilibrium)

$$\bar{A} = \langle A \rangle (N, V, \beta) = \frac{\sum_{i} e^{-E_{i}/k_{\rm B}T} \langle i | \hat{A} | i \rangle}{\sum_{i} e^{-E_{i}/k_{\rm B}T}}$$
(1)

where $\langle i | \hat{A} | i \rangle$ – expectation value in *N*-particle quantum state $| i \rangle$.

Direct way to proceed:

- Solve the Schrödinger equation for a many-body systems.
- Calculate for all states with non-negligible statistical weight $e^{-E_i/k_{\rm B}T}$ the matrix elements $\langle i|\hat{A}|i\rangle$.

This approach is *unrealistic*! Even if we solve *N*-particle Schrödinger equation number of states which contribute to the average would be astronomically large, e.g. $10^{10^{25}}$!

Monte-Carlo integration	Markov chains and the Metropolis algorithm	lsing model	Conclusion
	●೦೦೦	000000000	00
Statistical M	echanics		

Consider an average of observable \hat{A} in the canonical ensemble (fixed (N, V, T)). The probability that a system can be found in an energy eigenstate E_i is given by a Boltzmann factor (in thermal equilibrium)

$$\bar{A} = \langle A \rangle (N, V, \beta) = \frac{\sum_{i} e^{-E_{i}/k_{\rm B}T} \langle i | \hat{A} | i \rangle}{\sum_{i} e^{-E_{i}/k_{\rm B}T}}$$
(1)

where $\langle i | \hat{A} | i \rangle$ – expectation value in *N*-particle quantum state $| i \rangle$.

Direct way to proceed:

- Solve the Schrödinger equation for a many-body systems.
- Calculate for all states with non-negligible statistical weight $e^{-E_i/k_{\rm B}T}$ the matrix elements $\langle i|\hat{A}|i\rangle$.

This approach is *unrealistic*! Even if we solve *N*-particle Schrödinger equation number of states which contribute to the average would be astronomically large, e.g. $10^{10^{25}}$!

We need another approach! Equation (1) can be simplified in classical limit.

Monte-Carlo integration	Markov chains and the Metropolis algorithm	lsing model	Conclusion
	○●○○	000000000	00
Problem stat	ement		

• Obtain exact thermodynamic equilibrium configuration

$$\mathbf{R} = (\mathbf{r}_1, \mathbf{r}_2, \ldots, \mathbf{r}_N)$$

of interacting particles at given temperature T, particle number, N, external fields etc.

• Evaluate measurable quantities, such as total energy E, potential energy V, pressure P, pair distribution function g(r), etc.

$$\langle A \rangle (N,\beta) = \frac{1}{Z} \int d\mathbf{R} A(\mathbf{R}) e^{-\beta V(\mathbf{R})}, \qquad \beta = 1/k_B T.$$

Monte-Carlo integration	Markov chains and the Metropolis algorithm 00●0	lsing model 000000000	Conclusion
Monte Carlo a	oproach		

$$\int f(x) \cdot p(x) \, dx = \lim_{M \to \infty} \frac{1}{M} \sum_{i=1}^{M} f(x_i)_p = \lim_{M \to \infty} \langle f(x) \rangle_p$$

Monte-Carlo integration	Markov chains and the Metropolis algorithm 0000	lsing model 000000000	Conclusion 00
Monte Carlo a	pproach		

$$\int f(x) \cdot p(x) \, dx = \lim_{M \to \infty} \frac{1}{M} \sum_{i=1}^{M} f(x_i)_p = \lim_{M \to \infty} \langle f(x) \rangle_p$$

• We need to sample with the given Boltzmann probability, $p_B(\mathbf{R}_i) = e^{-\beta V(\mathbf{R}_i)}/Z$,

$$\langle A \rangle = \lim_{M \to \infty} \frac{1}{M} \sum_{i} A(\mathbf{R}_{i}) \, p_{B}(\mathbf{R}_{i}) = \lim_{M \to \infty} \langle A(\mathbf{R}) \rangle_{p_{B}} \, .$$

Monte-Carlo integration	Markov chains and the Metropolis algorithm 0000	lsing model 000000000	Conclusion 00
Monte Carlo a	pproach		

$$\int f(x) \cdot p(x) \, dx = \lim_{M \to \infty} \frac{1}{M} \sum_{i=1}^{M} f(x_i)_p = \lim_{M \to \infty} \langle f(x) \rangle_p$$

• We need to sample with the given Boltzmann probability, $p_B(\mathbf{R}_i) = e^{-\beta V(\mathbf{R}_i)}/Z$,

$$\langle A
angle = \lim_{M o \infty} rac{1}{M} \sum_i A(\mathbf{R}_i) \, p_B(\mathbf{R}_i) = \lim_{M o \infty} \left\langle A(\mathbf{R})
ight
angle_{p_B}.$$

• Direct sampling with p_B is not possible due to the *unknown* normalization Z.

Monte-Carlo integration	Markov chains and the Metropolis algorithm 0000	lsing model 000000000	Conclusion 00
Monte Carlo a	oproach		

$$\int f(x) \cdot p(x) \, dx = \lim_{M \to \infty} \frac{1}{M} \sum_{i=1}^{M} f(x_i)_p = \lim_{M \to \infty} \langle f(x) \rangle_p$$

• We need to sample with the given Boltzmann probability, $p_B(\mathbf{R}_i) = e^{-\beta V(\mathbf{R}_i)}/Z$,

$$\langle A
angle = \lim_{M o \infty} rac{1}{M} \sum_i A(\mathbf{R}_i) \, p_B(\mathbf{R}_i) = \lim_{M o \infty} \left\langle A(\mathbf{R})
ight
angle_{p_B}.$$

- Direct sampling with p_B is not possible due to the unknown normalization Z.
- Solution: Construct Markov chain using the Metropolis algorithm.
 - Use Metropolis Monte Carlo procedure (Markov process) to sample all possible configurations by moving individual particles.
 - Compute averages from fluctuating microstates.

Markov chains and the Metropolis algorithm $000 \bullet$

lsing model

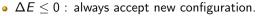
Conclusion

Metropolis sampling method (1953)

ΔE = V(R_{i+1}) - V(R_i).
 Evaluate the transition probability which satisfies the detailed balance:

Start from initial (random) configuration R_0 . Randomly displace one (or more) of the particles. Compute energy difference between two states:

$$\upsilon(\mathbf{R}_i, \mathbf{R}_{i+1}) = \frac{p_B(\mathbf{R}_{i+1})}{p_B(\mathbf{R}_i)} = \min\left[1, e^{-\beta \Delta E}\right]$$



- $\Delta E > 0$: accept with prob. $p = e^{-\beta \Delta E}$
- Solution Repeat steps (2)–(4) to obtain a final estimation: $\bar{A} = \langle A \rangle \pm \delta A$, with the error: $\delta A = \sqrt{\tau_A \sigma_A^2/M}$.

Markov chains and the Metropolis algorithm $000 \bullet$

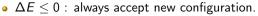
Ising model

Conclusion

Metropolis sampling method (1953)

- Start from initial (random) configuration R₀.
- 2 Randomly displace one (or more) of the particles.
- Compute energy difference between two states: $\Delta E = V(R_{i+1}) - V(R_i).$
- Evaluate the transition probability which satisfies the detailed balance:

$$\upsilon(\mathbf{R}_{i},\mathbf{R}_{i+1}) = \frac{p_{B}(\mathbf{R}_{i+1})}{p_{B}(\mathbf{R}_{i})} = \min\left[1, e^{-\beta \Delta E}\right]$$



- $\Delta E > 0$: accept with prob. $p = e^{-eta \Delta E}$
- Seperat steps (2)–(4) to obtain a final estimation: $\bar{A} = \langle A \rangle \pm \delta A$, with the error: $\delta A = \sqrt{\tau_A \sigma_A^2 / M}$.
- We reduce a number sampled configurations to $M \sim 10^6 \dots 10^8$.
- We account only for configurations with non-vanishing weights: $e^{-\beta V(\mathbf{R}_i)}$.

Markov chains and the Metropolis algorithm 0000

Ising model

Conclusion

Simulations of 2D Ising model

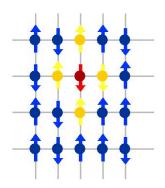


Figure: Lattice spin model with nearest neighbor interaction. The red site interacts only with the 4 adjacent yellow sites.

- We use the Ising model to demonstrate the studies of phase transitions.
- The Ising model considers the interaction of elementary objects called *spins* which are located at sites in a simple, 2-dimensional lattice,

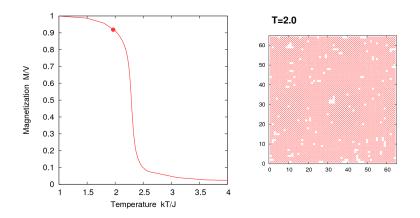
$$\hat{\mathcal{H}} = -J \sum_{i,j=nn(i)}^{N} \hat{S}_i \hat{S}_j - \mu_0 B \sum_{i=1}^{N} \hat{S}_i.$$

- Magnetic ordering:
 - J > 0: lowest energy state is *ferromagnetic*,
 - J < 0: lowest energy state is *antiferromagnetic*.

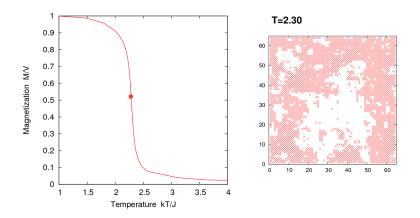
Monte-Carlo integration	Markov chains and the Metropolis algorithm	lsing model o●oooooooo	Conclusion
Equibrium pr	operties		

$$\begin{array}{ll} \text{Mean energy} & \langle E \rangle = \text{Tr} \, \hat{H} \hat{\rho}, \\ \text{Heat capacity} & C = \frac{\partial \left< E \right>}{\partial T} = \frac{1}{k_{\text{B}} T^2} \left(\left< E^2 \right> - \left< E \right>^2 \right), \\ \text{Mean magnetization} & \left< M \right> = \left< \left| \sum_{i=1}^N S_i \right| \right>, \\ \text{Linear magnetic susceptibility} & \chi = \frac{1}{k_{\text{B}} T} \left(\left< M^2 \right> - \left< M \right>^2 \right), \end{array}$$

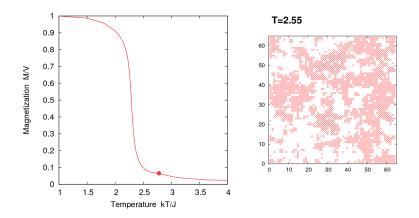
where $\langle M \rangle$ and $\langle M^2 \rangle$ are evaluated at zero magnetic field (B=0).

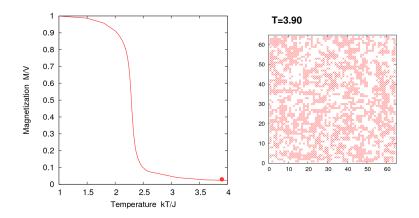


(ㅁ> 《圖> 《문> 《문> 문]님 '오이



《口》《聞》《臣》《臣》 王曰 ��?





Monte-Carlo integration	Markov chains and the Metropolis algorithm	lsing model	Conclusion
	0000	000●00000	00
Straightforward	implementation		

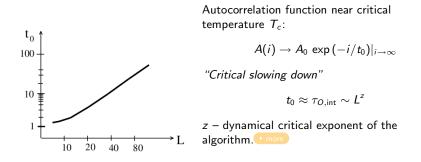
In each step we propose to flip a single spin, $S_i \rightarrow -S_i$, and use the original Metropolis algorithm to accept or reject.

Phase-odering kinetics if we start from completely disordered state.

- $T > T_c$ Equilibration will be fast.
- $T < T_c$ Initial configuration is far from typical equilibrium state. Parallel spins form domains of clusters. To minimize their surface energy, the domains grow and straighten their surface.

For $T < T_c$ it is improbable to switch from one magnetization to the other, since acceptance probability to flip a single spin in a domain is low $e^{-4J\Delta\sigma}$, $\Delta\sigma = \pm 2$.

We need to work out more efficient algorithm.

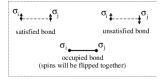


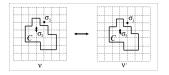
For the original *single spin-flip* alrogithm $z \approx 2$ in 2D.

$$L = 10^3 \Rightarrow au_{O, int} \sim 10^5 \dots 10^6$$

Monte-Carlo integration	Markov chains and the Metropolis algorithm 0000	lsing model 00000●000	Conclusion 00
Classical cluste	er algorithms		

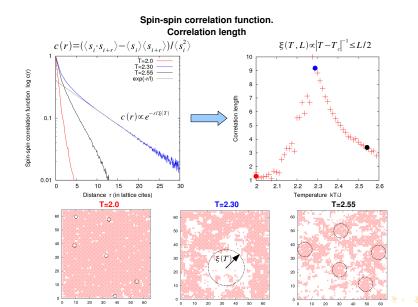
Original idea by Swendsen and Wang and later slightly modified by Niedermayer and Wolf. • more





- Look at all n.n. of spin σ₁ and if they point in the same direction include them in the cluster C with the probability P_{add}.
- For each new spin added to C repeat the same procedure.
- Ontinue until the list of n.n is empty.
- Flip all spins in C simultaneously with probability A.

Monte-Carlo integration	Markov chains and the Metropolis algorithm	lsing model 000000●00	Conclusion 00		
Spin-spin correlation.					

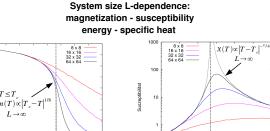


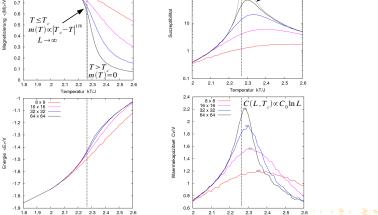
Markov chains and the Metropolis algorithm Ising model 000000000

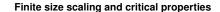
0.9

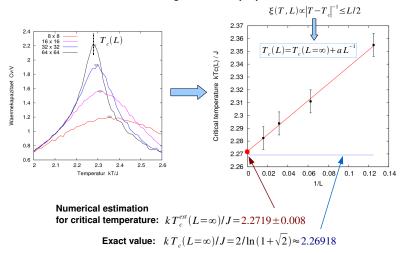
0.8

0.7









When/Why should one use classical Monte Carlo?

Advantages

- Easy to implement.
- 2 Easy to run a fast code.
- Easy to access equilibrium properties.

Disadvantages

- **()** Non-equilibrium properties are not accessible (\rightarrow Dynamic Monte Carlo).
- 2 No real-time dynamics information (\rightarrow Kinetic Monte Carlo).

Requirements

- **Q** Good pseudo-random-number generator, e.g. Mersenne Twister (period $2^{19937} 1$).
- 2 Efficient ergodic sampling.
- 3 Accurate estimations of autocorrelation times, statistical error, etc.

Monte-Carlo integration	Markov chains and the Metropolis algorithm 0000	lsing model 000000000	Conclusion
Fin			

Thanks for your attention!

Next lecture: Monte Carlo algorithms for quantum systems

Markov chain (Markov process) 🔸 🔤

The *Markov chain* is the probabilistic analogue of a trajectory generated by the equations of motion in the classical molecular dynamics.

- We specify transition probabilities v(R_i, R_{i+1}) from one state R_i to a new state R_{i+1} (different degrees of freedom in the system).
- We put restrictions on $v(\mathbf{R}_i, \mathbf{R}_{i+1})$:
 - The conservation law (the total probability that the system will reach some state \mathbf{R}_i is unity): $\sum_{\mathbf{R}_{i+1}} v(\mathbf{R}_i, \mathbf{R}_{i+1}) = 1$, for all \mathbf{R}_i .
 - **2** The distribution of \mathbf{R}_i converges to the unique equilibrium state: $\sum_{\mathbf{R}_i} p(\mathbf{R}_i) v(\mathbf{R}_i, \mathbf{R}_{i+1}) = p(\mathbf{R}_{i+1}).$
 - Ergodicity: The transition is ergodic, i.e. one can move from any state to any other state in a finite number of steps with a nonzero probability.
 - O All transition probabilities are *non-negative*: v(**R**_i, **R**_{i+1}) ≥ 0, for all **R**_i.
- In thermodynamic equilibrium, $dp(\mathbf{R})/dt = 0$, we impose an additional condition the *detailed balance*

$$p(\mathbf{R}_i)\upsilon(\mathbf{R}_i,\mathbf{R}_{i+1})=p(\mathbf{R}_{i+1})\upsilon(\mathbf{R}_{i+1},\mathbf{R}_i),$$

Ergodicity

 In simulations of classical systems we need to consider only configuration integral

$$Q_{NVT}^{\text{class}} = \text{Tr}\left[e^{-\beta\hat{H}}\right] = \frac{1}{N!} \left(\frac{2\pi mk_B T}{h^2}\right)^{3N/2} \int d\mathbf{r}^N e^{-\beta V(\mathbf{r}^N)}$$

- The average over all possible microstates {**r**^N} of a system is called *ensemble average*.
- This can differ from real experiment: we perform a series of measurements during a certain time interval and then determine average of these measurements.

Example: Average particle density at spatial point r

$$\bar{\rho}(\mathbf{r}) = \textit{lim}_{t\to\infty} \frac{1}{t} \int_{0}^{t} dt' \,\rho(\mathbf{r},t';\mathbf{r}^{N}(0),\mathbf{p}^{N}(0))$$

Ergodicity

• System is *ergodic*: the time average does not depend on the initial conditions.

 \rightarrow We can perform additional average over many different initial conditions $({\bf r}^{\it N}(0), {\bf p}^{\it N}(0))$

$$\bar{\rho}(\mathbf{r}) = \frac{1}{N_0} \sum_{N_0} \lim_{t \to \infty} \frac{1}{t} \int_0^t dt' \,\rho(\mathbf{r}, t'; \mathbf{r}^N(0), \mathbf{p}^N(0))$$

 N_0 is a number of initial conditions: same NVT, different $\mathbf{r}^N(0), \mathbf{p}^N(0)$.

 $ar{
ho}(\mathbf{r}) = \langle
ho(\mathbf{r})
angle_{\scriptscriptstyle NVE}$ time average = ensemble average

Nonergodic systems: glasses, metastable states, etc.

Autocorrelations • back

Algorithm efficiency can be characterized by the integrated autocorrelation time τ_{int} and autocorrelation function A(i):

$$\tau_{O,int} = 1/2 + \sum_{i=1}^{K} A(i) \left(1 - i/K\right), \quad A(i) = \frac{1}{\sigma_{O}^2} \langle O_1 O_{1+i} \rangle - \langle O_1 \rangle \langle O_{1+i} \rangle.$$

Temporal correlations of measurements enhance the statistical error:

$$\epsilon_{\tilde{O}} = \sqrt{\sigma_{\tilde{O}}^2} = \sqrt{\frac{\langle O_i^2 \rangle - \langle O_i \rangle^2}{K}} \sqrt{2\tau_{O,int}} = \sqrt{\frac{\sigma_{O_i}^2}{K_{\rm eff}}}, \quad K_{\rm eff} = K/2\tau_{O,int}.$$

Detailed balance for cluster algorithms + back

Detailed balance equation

$$(1-P_{\mathsf{add}})^{\mathcal{K}_{\nu}} \ \mathcal{P}_{\mathsf{acc}}(\nu \to \nu') e^{-\beta \mathcal{E}_{\nu}} = (1-P_{\mathsf{add}})^{\mathcal{K}_{\nu'}} \ \mathcal{P}_{\mathsf{acc}}(\nu' \to \nu) e^{-\beta \mathcal{E}_{\nu'}}$$

Probability to flip all spins in C:

$$A = \frac{P_{\rm acc}(\nu \to \nu')}{P_{\rm acc}(\nu' \to \nu)} = (1 - P_{\rm add})^{K_{\nu'} - K_{\nu}} e^{2J\beta (K_{\nu'} - K_{\nu})}$$

If we choose $P_{add} = 1 - e^{-2 J \beta} \Rightarrow A = 1$, i.e every update is accepted.

- $T \gg T_c$: $P_{add} \rightarrow 0$, only few spins in C (efficiency is similar to the *single spin-flip*)
- $T \leq T_c$: $P_{add} \rightarrow 1$, we flip large spin domains per one step.

Wolf algorithm reduces the dynamical critical exponent to $z \le 0.25$. Enormous efficiency gain over the *single spin-flip*!