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Quick review on the quantum harmonic oscillator

Hamiltonian of a single particle (of mass m) moving in a parabolic confinement of
frequency ω (harmonic oscillator)

Ĥ =
p̂2

2m
+

m

2
ω2x̂2 , p̂ = −i~∇

Canonical commutation relation:

[x̂ , p̂]− = i~ , [A,B]± = ÂB̂ ± B̂Â

Alternative formulation:

Ĥ = ~ω
„

â†â +
1

2

«

with creation and annihilation operators

â =
1√
2

»r
mω

~
x̂ + i

p̂√
mω~

–
, â† =

1√
2

»r
mω

~
x̂ − i

p̂√
mω~

–
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Quick review on the quantum harmonic oscillator

Action onto an arbitrary state |n〉, n = 0, 1, . . .

â† |n〉 =
√

n + 1 |n + 1〉 , â |n〉 =
√

n |n − 1〉

Properties:

[â, â†]− = 1 , [â, â]− = 0 , [â†, â†]− = 0

Occupation number operator n̂ = â†â obeys n̂ |n〉 = n |n〉

Direct way for solution:

Ground state: â |0〉 = 0 (|0〉: vacuum state) ⇒ differential equation for

ψ0(x) = 〈x |0〉 with solution ψ0(x) =
`

mω
π~
´1/4

e−
mω
2~ x2

and
energy eigenvalue E0 = ~ω/2

Excited states: ψn(x) = 1√
n!
〈x | (a†)n |0〉, En = ~ω(n + 1

2
)
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Idea of second quantization

Single harmonic oscillator =⇒ Generalizations: Coupled harmonic oscillators

Extend concept of single-particle creation (annihilation) operators to
interacting many-body systems

Account for the correct fermionic (bosonic) symmetry—include Fermi-Dirac
(Bose-Einstein) statistics

Reformulation where symmetry relations of bosonic and fermionic
wavefunctions are naturally (automatically) included

Allow for states with variable particle number → Fock space!
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Idea of second quantization

Fock space:

Denote by HN the Hilbert space for N particles.

The Fock space is the direct sum

H = H0 ⊕H1 ⊕ . . .⊕HN ⊕ . . .

An arbitrary state |ψ〉 in Fock space is the sum over all subspaces HN

|ψ〉 = |ψ(0)〉+ |ψ(1)〉+ . . .+ |ψ(N)〉+ . . .

The subspace H0 is one-dimensional spanned by vector |0〉 (vacuum)

Inner product 〈χ|ψ〉 =
P∞

j=0〈χ
(j)|ψ(j)〉 vanishes, if |χ〉 and |ψ〉 belong to

different subspaces (orthogonality)

Full support for (anti)symmetry of the many-body state

Particle number is not fixed a-priori. Statistical physics picture:
CE (canonical ensemble) → GCE (grand canonical ensemble)
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Idea of second quantization

Creation and annihilation operators:

Example: Consider |ψ(N)〉 ∈ HN being constructed from 1-particle states ψk

with k = 1, 2, . . . ,N, i.e. |ψ(N)〉 = |ψ1, . . . , ψN〉
Let |φ〉 ∈ H1 be an arbitrary one-particle state (no particular representation)
Creation operator:

â†(φ) |ψ(N)〉 = â†(φ) |ψ1, . . . , ψN〉 = |φ, ψ(N)〉

Destruction/annihilation operator:
(upper sign = bosons, lower sign = fermions)

〈χ(N−1)| â(φ) |ψ(N)〉 = 〈ψ(N)| â†(φ) |χ(N−1)〉
∗

â(φ) |ψ(N)〉 =
NX

k=1

(±)k−1〈φ|ψk〉 |ψ1, . . . , ψk−1, ψk+1, . . . , ψN〉

Fermi or Bose statistics enter via (anti-)commutation relationsh
â†(φ1), â

†(φ2)
i
∓

= 0 , [â(φ1), â(φ2)]∓ = 0 ,
h
â(φ1), â

†(φ2)
i
∓

= 〈φ1|φ2〉
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Idea of second quantization

Changing between different one-particle representations:

Let {|χi 〉} and {|φi 〉} be two distinct complete sets of one-particle states
corresponding to an N-particle system.

The annihilation (creation) operators a(†)(χi ) in the representation |χi 〉 are
then obtained from a(†)(φα) by the following transformation:

â†(χi ) =
X

α

〈φα|χi 〉 â†(φα) , â(χi ) =
X

α

〈χi |φα〉 â(φα) ,

with coefficients 〈φα|χi 〉 and 〈χi |φα〉, respectively.
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Second quantized Hamiltonian

Consider N identical non-relativistic particles represented by a coordinate wave
function ψ(r1, . . . , rN), with ri labeling coordinate and spin.

Hamiltonian (1st quantization):

Ĥ(t) = − ~2

2m

NX
i=1

∇2
ri +

NX
i=1

V (ri , t) +
X
i<j

W (ri − rj)

Hamiltonian (2nd quantization):

In position space representation â(†)(φ) → Ψ̂(†)(r)

Ψ̂†(r), Ψ̂(r) in this represantation are called ”field operators”

(Anti-)commutation relations (bosons/fermions): more

[Ψ̂(†)(r1), Ψ̂
(†)(r2)]∓ = 0 , [Ψ̂(r1), Ψ̂

†(r2)]∓ = δ(r1 − r2)
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Second quantized Hamiltonian

Hamiltonian (2nd quantization)—continued: more

Ĥ(t) =

Z
d3r Ψ̂†(r)

»
− ~2

2m
∇2 + V (r, t)

–
Ψ̂(r) (1)

+
1

2

ZZ
d3r d3 r̄ Ψ̂†(r)Ψ̂†(̄r)w(r − r̄)Ψ̂(̄r)Ψ̂(r)

general result for fermions and bosons

Ĥ(t) commutes with the total number operator N̂ =
R

d3r Ψ̂†(r)Ψ̂(r),

since Ĥ(t) conserves total number of particles

Fock space picture related to GCE suggests fixing the particle number via
chemical potential µ (Lagrange multiplier) in order to weight contributions
from different parts of the Fock space H

Require the average particle number 〈N̂〉 to be fixed. Define:

H̃(t) = Ĥ(t)− µN̂
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Heisenberg picture and ensemble averages

Goal: development of a time-dependent quantum many-body theory

Heisenberg picture:

Operators become explicitly time-dependent, |ψ(N)〉 = const

In particular, Ψ̂(†)(r) → Ψ̂
(†)
H (r, t) = Û†(t, t0) Ψ̂(†)(r) Û(t, t0) with

time-evolution operator

Û(t, t0) = exp

„
− i

~

Z t

t0

dt̄ H̃(t̄)

«
, Û†(t, t0) = Û(t0, t)

Heisenberg equation ∂
∂t

Ψ̂
(†)
H (r, t) = −i

h
H̃, Ψ̂

(†)
H (r, t)

i
−

Ensemble averages of Ψ̂
(†)
H (r, t):

Single-field operator randomly fluctuating, expectation values 〈Ψ(†)
H (r, t)〉

(〈. . .〉 = Tr{ρ̂ . . .}) often vanish

Need two-operator averages

(compare with harmonic oscillator: two-operator product 〈n̂〉 = 〈â†â〉 yields
average occupation number)
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Nonequilibrium Green’s functions G≷(1, 1̄)

Nonequilibrium Green’s functions (NEGF):

Ψ̂†
H(r, t), Ψ̂H(r, t) are non-commuting ⇒ in nonequilibrium exist two possible

independent combinations

Correlation functions G≷

G<(1, 1̄) = ± 1

i~

D
Ψ̂†

H(1̄)Ψ̂H(1)
E

G>(1, 1̄) =
1

i~

D
Ψ̂H(1)Ψ̂†

H(1̄)
E

coordinate representation, 1 = r1, t1, 1̄ = r1̄, t1̄, and 〈. . .〉 = Tr{ρ̂ . . .}

Connection with reduced density matrix (time-diagonal element)

ρ(r1, r1̄; T ) = ±i~G<(1, 1̄)|t1=t1̄=T

Relative and center-of-mass variables T = (t1 + t1̄)/2, t = t1 − t1̄,
R = (r1 + r1̄)/2, and r = r1 − r1̄ often useful
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Nonequilibrium Green’s functions G (1, 1̄)

Recall: Vacuum field theory uses time-ordered products

⇒ Perturbation theory, Wick theorem, Feynman diagrams

Thus define

Time-ordered 1-particle Green’s function:

G(1, 1̄) = −i
D
TC Ψ̂H(1) Ψ̂†

H(1̄)
E

= θ(t1, t1̄)G>(1, 1̄) − θ(t1̄, t1)G<(1, 1̄)

From now on take ~ ≡ 1

Formally, the operator TC ensures time-ordering

Time-ordered 2-particle Green’s function:

G12(1, 2; 1̄, 2̄) = (−i)2
D
TC Ψ̂H(1) Ψ̂H(2) Ψ̂†

H(2̄) Ψ̂†
H(1̄)

E
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Information contained in G (1, 1̄)

One-particle density1

〈n̂〉(r1, t1) = −i G(1, 1+) = ±i G<(r1t1, r1t1)

Particle number

〈N̂〉(t1) = −i

Z
d3r1 G(1, 1+)

Charge current density (in absence of any vector potential A(r, t))

〈j〉(1) = ±i


∇r1 −∇r2

2im
G<(1, r2t1)

ff
r1=r2

Total energy (2-particle quantity)

〈Ê〉(t1) = ±i

Z
d3r1


1

2
(i
∂

∂t1
+ H0(1)− 2µ)G(1, 1̄)

ff
1=1̄

with one-particle (energy) operator H0(1) = − ~2

2m
∇2

r1 + V (r1, t)

1notation 1+ indicates t1 → t1 + ε, ε > 0
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Information contained in G (1, 1̄)

Wigner function:

f (p,R,T ) = ± i

2π

Z
dω G(p, ω;R,T )

f (p,R,T ) is central quantity in the Wigner representation of a reduced
density operator theory G(p, ω; R, T )

Spectral function: more

A(1, 1̄) = i{G>(1, 1̄)− G<(1, 1̄)}

Gives DOS by Fourier transform with respect to relative time t (in general
space-time dependent and momentum resolved)

Integration over remaining degrees of freedom in G(p, ω;R,T ) → A(ω)
(pure DOS)
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Time-dependent observables

Evolution of an observable 〈Ô〉 in the GCE:

Assume H̃(t ≤ t0) = H̃0 is time-independent for t ≤ t0

〈Ô〉(t) = Tr
n
ρ̂ ÔH(t)

o
, ρ̂ =

e−βH̃0

Tr
˘
e−βH̃0

¯ , ÔH(t) = Û(t0, t)ÔÛ(t, t0)

time-evolution operator Û(t, t0) = exp

 
−i

tR
t0

dt̄ H̃(t̄)

!
Consider: Û(t0 − iβ, t0)

Û(t0 − iβ, t0) = exp

„
−i
h
H̃0 t̄

it0−iβ

t0

«
= exp

“
−βH̃0

”
Result:

〈Ô〉(t) =
Tr
n

Û(t0 − iβ, t0) Û(t0, t) Ô Û(t, t0)
o

Tr
n

Û(t0 − iβ, t0)
o

Interpretation: time-evolution t0 → t, action of Ô, t → t0, t0 → t0 − iβ
more

density operator
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Complex-time Schwinger/Keldysh contour C ′

Introduce deformed time-contour: Schwinger/Keldysh contour C ′

Figure: Full Keldysh contour C ′ = {t ∈ C|Im t ∈ [−β, 0],Re t ∈ [t0,∞]}

Need: Statistical average of the time-ordered field-operator product

Consequently, V also enters in the 1-particle Green’s function
G(1, 1̄) = −i〈TC ′ Ψ̂h(1) Ψ̂†

H(1̄)〉 giving rise to subordinated Green’s
functions which exist on different contour branches C and V , or on V only.

=⇒ two mixed functions (G d, G e) and the Matsubara Green’s function GM

more
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Equations of motions for G (1, 1̄)

1 Starting point: Heisenberg equation for Ψ̂H(r, t) and Ψ̂†
H(r, t)

∂

∂t
Ψ̂

(†)
H (r, t) = −i

h
H̃, Ψ̂

(†)
H (r, t)

i
−

It follows (1 = r1, t1; 1̄ = r1̄, t1̄)„
i
∂

∂t1
+

~2

2m
∇2

r1 − V (1) + µN̂

«
Ψ̂H(1) =

Z
C ′

d1̄ W (1− 1̄) Ψ̂†
H(1̄) Ψ̂H(1̄) Ψ̂H(1)

Definition: Use short notation
R

C ′d1̄ =
R

C ′dt1̄
R

d3r1̄

Instantaneous pair interaction W (1− 1̄) = w(r1 − r1̄)δC ′(t1 − t1̄)

Closed equation for Ψ̂H(1), adjoint equation for Ψ̂†
H(1)

Goal: nonzero combination of field operators (→ NEGF)
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Equations of motions for G (1, 1̄)

2 Proceed: Multiplication by (−i)Ψ
(†)
H (r1̄, t1̄), time-ordering TC ′ ,

and ensemble averaging 〈. . .〉

l.h.s. using H1(1) = − ~2

2m
∇2

r1 + V (1)− µN̂

(−i)

fi
TC ′

»„
i
∂

∂t1
− H1(1)

«
Ψ̂H(1) Ψ̂†

H(1̄)

–fl
= i(−i)

fi
TC ′

»
∂

∂t1
Ψ̂H(1) Ψ̂†

H(1̄)

–fl
− H1(1) (−i)

D
TC ′ Ψ̂H(1) Ψ̂†

H(1̄)
E

=

„
i
∂

∂t1
− H1(1)

«
G(1, 1̄)− δC (1− 1̄)

r.h.s. 2+ indicates t2 → t2 + ε, ε > 0

(−i)

Z
C ′

d2 W (1− 2)
D
TC ′Ψ̂†

H(2+) Ψ̂H(2) Ψ̂H(1) Ψ̂†
H(1̄)

E
= ±i(−i)2

Z
C ′

d2 W (1− 2)
D
TC ′Ψ̂H(1) Ψ̂H(2) Ψ̂†

H(2+) Ψ̂†
H(1̄)

E
= ±i

Z
C ′

d2 W (1− 2)G12(1, 2; 1̄, 2+)
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Kadanoff-Baym/Keldysh equations

3 Additionally: Adjoint equation with times t1 and t1̄ interchanged

Kadanoff-Baym/Keldysh equations (KBE)—Summary

„
i
∂

∂t1
− H1(1)

«
G(1, 1̄) = δC ′(1− 1̄) ± i

Z
C ′

d2 W (1− 2)G12(1, 2; 1̄, 2+)„
−i

∂

∂t1̄
− H1(1̄)

«
G(1, 1̄) = δC ′(1− 1̄) ± i

Z
C ′

d2 W (1̄− 2)G12(1, 2; 1̄, 2+)

Coupled pair of first order integro-differential equations in the time
arguments t1, t1̄ ∈ C ′

H1(1) = − ~2

2m
∇2

r1 + V (1)− µN̂ denotes the single-particle Hamiltonian

KBE not closed but coupled to higher orders via the 2-particle Green’s
function G12(1, 2; 1̄, 2̄) =⇒ Martin-Schwinger hierarchy (generalization of
BBGKY hierarchy): The n-particle Green’s function generally requires
information from the (n ± 1)-particle Green’s function

KBE must be supplied with initial boundary (or initial) conditions
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KBE—boundary or initial conditions

Apply either

Kubo-Martin-Schwinger (KMS) boundary conditions2:

(known from equilibrium theory)

G(r1t0, 1̄) = ±G(r1t0 − iβ, 1̄)

G(1, r1̄t0) = ±G(1, r1̄t0 − iβ)

(Anti-)periodicity in the inverse temperature β for bosons (fermions)

compute equilibrium Green’s function prior to
time-propagation—systematic and consistent approach

or

Initial conditions (Kadanoff/Baym):

from given spectral and Wigner function, A and f construct:

iG>(p, ω;R, t0) = A(p, ω;R, t0) [1± f (p, ω;R, t0)]

±iG<(p, ω;R, t0) = A(p, ω;R, t0) f (p, ω;R, t0)

2obtained from the cyclic property of the trace
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Conclusion

1-particle Green’s function: function of two space-time variables. Equation of
motion: KBE

From G(1, 1̄) one can calculate time-dependent expectation values such as
currents densities, total energy etc.

Why nonequilibrium Green’s functions?

Without external field: NEGF naturally reduces to equilibrium (Matsubara)
Green’s functions

Applicable to arbitrary nonequilibrium processes

Can handle strong external fields nonperturbatively

→ next lecture:

Conserving approximations (hierarchy decoupling), memory effects/kernels

Inclusion of particle-particle interactions via infinite summations (self-energy)



Concept of second quantization Real-time (Keldysh) Green’s functions Kadanoff-Baym/Keldysh equations Conclusion

Fin

Thanks for your attention!

Next lecture: (i) Hierarchy decoupling, self-energies and Feynman diagrams
(ii) Single-time kinetic equations
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Creation and annihilation operators back

Action of Ψ̂(†)(r) on a N-particle state ψN(r1, . . . , rN):

Particle destruction/annihilation

Ψ̂(r)ψ(N)(r1, . . . , rN) =
√

N ψ(N)(r1, . . . , rN−1, r)

Particle creation

Ψ̂†(r)ψ(N)(r1, . . . , rN)

=
(±1)N

√
N + 1

N+1X
j=1

(±1)j+1δ(r − rj)ψ
(N)(r1, . . . , rj−1, rj+1, . . . , rN+1)
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Second quantized Hamiltonian back

Example: Kinetic energy operator T̂ = − ~2

2m

PN
i=1∇

2
ri in 2nd quantization

T̂ = − ~2

2m

Z
d3r Ψ̂†(r)∇2

r Ψ̂(r)

Proof:

T̂ψ(N)(r1, . . . , rN) = −
~2

2m

Z
d3r ∇2

r̄ Ψ̂†(r) Ψ̂(̄r)ψ(N)(r1, . . . , rN)
˛̨̨̄
r=r

= −
~2

2m

Z
d3r ∇2

r̄ Ψ̂†(r)
√

N ψ(N)(r1, . . . , rN−1, r̄)
˛̨̨̄
r=r

= −
~2

2m

NX
i=1

Z
d3r ∇2

r̄ δ(r − ri )ψ
(N)(r1, . . . , ri−1, r̄, ri+1, . . . , rN)

˛̨̨̄
r=r

= −
~2

2m

NX
i=1

∇2
r ψ

(N)(r1, . . . , ri−1, r, ri+1, . . . , rN)

=

 
−

~2

2m

NX
i=1

∇2
ri

!
ψ(N)(r1, . . . , rN)
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G≷ in relative and center of mass coordinates back

We recall that

G<(pω,RT ) =

Z
d3r dt e−ipr+iωt [±iG<(rt,RT )]

G>(pω,RT ) =

Z
d3r dt e−ipr+iωt i G>(rt,RT )

R =
r1 + r1̄

2
, T =

t1 + t1̄
2

, r = r1 − r1̄ , t = t1 − t1̄

G<(pω,RT ) can be interpreted as the density of particles with momentum p
and energy ω at the space time point (R, t)

Correspondingly, G>(pω,RT ) denotes the density of states available to a
particle that is added to the system at (R, t) with momentum p and energy ω
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Spectral function A(ω) back

1 If the Hamiltonian is of single-particle type Ĥ =
P

i Ĥ
1(ri ) (the eigenvalue

problem can be solved) and the spectral function is given for (homogeneous
systems) by

A(p, ω) = 2πδ(ω − E(p)) , E(p) =
p2

2m

2 For (homogeneous) effective single-particle problems (e.g. in a Hartree-Fock

theory) one can replace E(p) → p2

2m
+ ∆(p), where ∆(p) are the

corresponding self-energy contributions.
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Time-dependent observables back

More formally, one arrives at the general expression

〈Ô〉(t) =
Tr
n

TC ′ [exp(−i
R

C ′ dt̄ Ĥ(t̄))O(t)]
o

Tr
n

Û(t0 − iβ, t0)
o ,

where the exponential function is to be understood as Dyson series.
TC ′ is defined by

TC ′

“
Ô1(t1) . . . Ôs(ts)

”
=
X

σ∈Ps

(±)I (σ)
s−1Y
j=1

θ(tσj , tσj+1)
sY

k=1

Ôσk (tσk )

1 TC ′ moves later operator to the left

2 Each exchange of two fermionic operators accompanied by a minus
sign, i.e. I (σ) gives the number of pair transpositions in permutation σ

3 θ(t1, t2) = 1 if t1 is situated later on the contour C ′ than t2
and 0 otherwise
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Full set of Green’s functions back

In general: G(1, 1̄) can be understood as a 3× 3-matrix of the form0B@ G++ G+− G+|

G−+ G−− G−|

G |+ G |− G ||

1CA =

0B@ G c G< G e

G> G a G e

G d G d GM

1CA c: causal, a: anticausal

M: Matsubara

Correlation functions G≷(1, 1̄)

G>(1, 1̄) =
1

i

D
Ψ̂H(1)Ψ̂†

H(1̄)
E

G<(1, 1̄) = ±1

i

D
Ψ̂†

H(1̄)Ψ̂H(1)
E

G c/a(1, 1̄) = θ(±[t1 − t1̄])G
>(1, 1̄) + θ(±[t1̄ − t1])G

<(1, 1̄)

Matsubara Green’s function GM(1, 1̄) with τ1, τ1̄ ∈ Im C ′

GM(r1, r1̄; τ1 − τ1̄) = G(r1t0 − iτ1, r1̄t0 − iτ1̄)

Mixed functions G d/e(1, 1̄) with t1, t1̄ ∈ Re C ′ and τ1, τ1̄ ∈ Im C ′

G e(r1t1, r1̄τ1̄) = G<(r1t1, r1̄t0 − iτ1̄)

G d(r1τ1, r1̄t1̄) = G>(r1t0 − iτ1, r1̄t1̄)

c: causal

a: anticausal


	Concept of second quantization
	Review
	Concept and formulation

	Real-time (Keldysh) Green's functions
	Definition
	Contents and observables

	Kadanoff-Baym/Keldysh equations
	Equations of motion

	Conclusion
	Conclusion

	Appendix
	Appendix


