Quantum kinetic equations Lecture \#1

Michael Bonitz, Karsten Balzer

Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany

December 3, 2008

Outline

(1)

Concept of second quantization

- Review
- Concept and formulation
(2) Real-time (Keldysh) Green's functions
- Definition
- Contents and observables
(3) Kadanoff-Baym/Keldysh equations
- Equations of motion
(4) Conclusion
- Conclusion

Quick review on the quantum harmonic oscillator

Hamiltonian of a single particle (of mass m) moving in a parabolic confinement of frequency ω (harmonic oscillator)

$$
\hat{H}=\frac{\hat{p}^{2}}{2 m}+\frac{m}{2} \omega^{2} \hat{x}^{2}, \quad \hat{p}=-i \hbar \nabla
$$

Canonical commutation relation:

$$
[\hat{x}, \hat{p}]_{-}=i \hbar, \quad[A, B]_{ \pm}=\hat{A} \hat{B} \pm \hat{B} \hat{A}
$$

Alternative formulation:

$$
\hat{H}=\hbar \omega\left(\hat{a}^{\dagger} \hat{a}+\frac{1}{2}\right)
$$

with creation and annihilation operators

$$
\hat{a}=\frac{1}{\sqrt{2}}\left[\sqrt{\frac{m \omega}{\hbar}} \hat{x}+i \frac{\hat{p}}{\sqrt{m \omega \hbar}}\right], \quad \hat{a}^{\dagger}=\frac{1}{\sqrt{2}}\left[\sqrt{\frac{m \omega}{\hbar}} \hat{x}-i \frac{\hat{p}}{\sqrt{m \omega \hbar}}\right]
$$

Quick review on the quantum harmonic oscillator

Action onto an arbitrary state $|n\rangle, n=0,1, \ldots$

$$
\hat{a}^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle, \quad \hat{a}|n\rangle=\sqrt{n}|n-1\rangle
$$

Properties:

$$
\left[\hat{a}, \hat{a}^{\dagger}\right]_{-}=1, \quad[\hat{a}, \hat{a}]_{-}=0, \quad\left[\hat{a}^{\dagger}, \hat{a}^{\dagger}\right]_{-}=0
$$

Occupation number operator $\hat{n}=\hat{a}^{\dagger} \hat{a}$ obeys $\hat{n}|n\rangle=n|n\rangle$
Direct way for solution:

- Ground state: $\hat{a}|0\rangle=0(|0\rangle$: vacuum state $) \Rightarrow$ differential equation for $\psi_{0}(x)=\langle x \mid 0\rangle$ with solution $\psi_{0}(x)=\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} e^{-\frac{m \omega}{2 \hbar} x^{2}}$ and energy eigenvalue $E_{0}=\hbar \omega / 2$
- Excited states: $\psi_{n}(x)=\frac{1}{\sqrt{n!}}\langle x|\left(a^{\dagger}\right)^{n}|0\rangle, E_{n}=\hbar \omega\left(n+\frac{1}{2}\right)$

Idea of second quantization

Single harmonic oscillator \Longrightarrow Generalizations: Coupled harmonic oscillators

- Extend concept of single-particle creation (annihilation) operators to interacting many-body systems
- Account for the correct fermionic (bosonic) symmetry—include Fermi-Dirac (Bose-Einstein) statistics
- Reformulation where symmetry relations of bosonic and fermionic wavefunctions are naturally (automatically) included
- Allow for states with variable particle number \rightarrow Fock space!

Idea of second quantization

Fock space:

- Denote by \mathcal{H}_{N} the Hilbert space for N particles.
- The Fock space is the direct sum

$$
\mathcal{H}=\mathcal{H}_{0} \oplus \mathcal{H}_{1} \oplus \ldots \oplus \mathcal{H}_{N} \oplus \ldots
$$

- An arbitrary state $|\psi\rangle$ in Fock space is the sum over all subspaces \mathcal{H}_{N}

$$
|\psi\rangle=\left|\psi^{(0)}\right\rangle+\left|\psi^{(1)}\right\rangle+\ldots+\left|\psi^{(N)}\right\rangle+\ldots
$$

- The subspace \mathcal{H}_{0} is one-dimensional spanned by vector $|0\rangle$ (vacuum)
- Inner product $\langle\chi \mid \psi\rangle=\sum_{j=0}^{\infty}\left\langle\chi^{(j)} \mid \psi^{(j)}\right\rangle$ vanishes, if $|\chi\rangle$ and $|\psi\rangle$ belong to different subspaces (orthogonality)
- Full support for (anti)symmetry of the many-body state
- Particle number is not fixed a-priori. Statistical physics picture: CE (canonical ensemble) \rightarrow GCE (grand canonical ensemble)

Idea of second quantization

Creation and annihilation operators:

- Example: Consider $\left|\psi^{(N)}\right\rangle \in \mathcal{H}_{N}$ being constructed from 1-particle states ψ_{k} with $k=1,2, \ldots, N$, i.e. $\left|\psi^{(N)}\right\rangle=\left|\psi_{1}, \ldots, \psi_{N}\right\rangle$
- Let $|\phi\rangle \in \mathcal{H}_{1}$ be an arbitrary one-particle state (no particular representation) Creation operator:

$$
\hat{a}^{\dagger}(\phi)\left|\psi^{(N)}\right\rangle=\hat{a}^{\dagger}(\phi)\left|\psi_{1}, \ldots, \psi_{N}\right\rangle=\left|\phi, \psi^{(N)}\right\rangle
$$

Destruction/annihilation operator:
(upper sign $=$ bosons, lower sign $=$ fermions)

$$
\begin{aligned}
\left\langle\chi^{(N-1)}\right| \hat{a}(\phi)\left|\psi^{(N)}\right\rangle & =\left\langle\psi^{(N)}\right| \hat{a}^{\dagger}(\phi)\left|\chi^{(N-1)}\right\rangle^{*} \\
\hat{a}(\phi)\left|\psi^{(N)}\right\rangle & =\sum_{k=1}^{N}(\pm)^{k-1}\left\langle\phi \mid \psi_{k}\right\rangle\left|\psi_{1}, \ldots, \psi_{k-1}, \psi_{k+1}, \ldots, \psi_{N}\right\rangle
\end{aligned}
$$

- Fermi or Bose statistics enter via (anti-)commutation relations

$$
\left[\hat{a}^{\dagger}\left(\phi_{1}\right), \hat{a}^{\dagger}\left(\phi_{2}\right)\right]_{\mp}=0, \quad\left[\hat{a}\left(\phi_{1}\right), \hat{a}\left(\phi_{2}\right)\right]_{\mp}=0, \quad\left[\hat{a}\left(\phi_{1}\right), \hat{a}^{\dagger}\left(\phi_{2}\right)\right]_{\mp}=\left\langle\phi_{1} \mid \phi_{2}\right\rangle
$$

Idea of second quantization

- Changing between different one-particle representations:

Let $\left\{\left|\chi_{i}\right\rangle\right\}$ and $\left\{\left|\phi_{i}\right\rangle\right\}$ be two distinct complete sets of one-particle states corresponding to an N-particle system.

The annihilation (creation) operators $a^{(\dagger)}\left(\chi_{i}\right)$ in the representation $\left|\chi_{i}\right\rangle$ are then obtained from $a^{(\dagger)}\left(\phi_{\alpha}\right)$ by the following transformation:

$$
\hat{a}^{\dagger}\left(\chi_{i}\right)=\sum_{\alpha}\left\langle\phi_{\alpha} \mid \chi_{i}\right\rangle \hat{a}^{\dagger}\left(\phi_{\alpha}\right), \quad \hat{a}\left(\chi_{i}\right)=\sum_{\alpha}\left\langle\chi_{i} \mid \phi_{\alpha}\right\rangle \hat{a}\left(\phi_{\alpha}\right),
$$

with coefficients $\left\langle\phi_{\alpha} \mid \chi_{i}\right\rangle$ and $\left\langle\chi_{i} \mid \phi_{\alpha}\right\rangle$, respectively.

Second quantized Hamiltonian

Consider N identical non-relativistic particles represented by a coordinate wave function $\psi\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right)$, with \mathbf{r}_{i} labeling coordinate and spin.

Hamiltonian ($1^{\text {st }}$ quantization):

$$
\hat{H}(t)=-\frac{\hbar^{2}}{2 m} \sum_{i=1}^{N} \nabla_{\mathbf{r}_{i}}^{2}+\sum_{i=1}^{N} V\left(\mathbf{r}_{i}, t\right)+\sum_{i<j} W\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right)
$$

Hamiltonian (2 $2^{\text {nd }}$ quantization):

- In position space representation $\hat{a}^{(\dagger)}(\phi) \rightarrow \hat{\Psi}^{(\dagger)}(\mathbf{r})$
- $\hat{\Psi}^{\dagger}(\mathbf{r}), \hat{\Psi}(\mathbf{r})$ in this represantation are called "field operators"
(Anti-)commutation relations (bosons/fermions):

$$
\left[\hat{\Psi}^{(\dagger)}\left(\mathbf{r}_{1}\right), \hat{\Psi}^{(\dagger)}\left(\mathbf{r}_{2}\right)\right]_{\mp}=0, \quad\left[\hat{\Psi}\left(\mathbf{r}_{1}\right), \hat{\Psi}^{\dagger}\left(\mathbf{r}_{2}\right)\right]_{\mp}=\delta\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)
$$

Second quantized Hamiltonian

Hamiltonian (2 $2^{\text {nd }}$ quantization)—continued:

$$
\begin{align*}
\hat{H}(t)= & \int \mathrm{d}^{3} r \hat{\Psi}^{\dagger}(\mathbf{r})\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(\mathbf{r}, t)\right] \hat{\Psi}(\mathbf{r}) \tag{1}\\
& +\frac{1}{2} \iint \mathrm{~d}^{3} r \mathrm{~d}^{3} \bar{r} \hat{\Psi}^{\dagger}(\mathbf{r}) \hat{\Psi}^{\dagger}(\overline{\mathbf{r}}) w(\mathbf{r}-\overline{\mathbf{r}}) \hat{\Psi}(\overline{\mathbf{r}}) \hat{\Psi}(\mathbf{r})
\end{align*}
$$

- general result for fermions and bosons
- $\hat{H}(t)$ commutes with the total number operator $\hat{N}=\int \mathrm{d}^{3} r \hat{\Psi}^{\dagger}(\mathbf{r}) \hat{\Psi}(\mathbf{r})$, since $\hat{H}(t)$ conserves total number of particles
- Fock space picture related to GCE suggests fixing the particle number via chemical potential μ (Lagrange multiplier) in order to weight contributions from different parts of the Fock space \mathcal{H}
- Require the average particle number $\langle\hat{N}\rangle$ to be fixed. Define:

$$
\tilde{H}(t)=\hat{H}(t)-\mu \hat{N}
$$

Heisenberg picture and ensemble averages

Goal: development of a time-dependent quantum many-body theory Heisenberg picture:

- Operators become explicitly time-dependent, $\left|\psi^{(N)}\right\rangle=$ const
- In particular, $\hat{\Psi}^{(\dagger)}(\mathbf{r}) \rightarrow \hat{\Psi}_{H}^{(\dagger)}(\mathbf{r}, t)=\hat{U}^{\dagger}\left(t, t_{0}\right) \hat{\Psi}^{(\dagger)}(\mathbf{r}) \hat{U}\left(t, t_{0}\right)$ with time-evolution operator

$$
\hat{U}\left(t, t_{0}\right)=\exp \left(-\frac{i}{\hbar} \int_{t_{0}}^{t} \mathrm{~d} \bar{t} \tilde{H}(\bar{t})\right), \quad \hat{U}^{\dagger}\left(t, t_{0}\right)=\hat{U}\left(t_{0}, t\right)
$$

- Heisenberg equation $\frac{\partial}{\partial t} \hat{\Psi}_{H}^{(\dagger)}(\mathbf{r}, t)=-i\left[\tilde{H}, \hat{\Psi}_{H}^{(\dagger)}(\mathbf{r}, t)\right]_{-}$

Ensemble averages of $\hat{\Psi}_{H}^{(\dagger)}(\mathbf{r}, t)$:

- Single-field operator randomly fluctuating, expectation values $\left\langle\Psi_{H}^{(\dagger)}(\mathbf{r}, t)\right\rangle$ $(\langle\ldots\rangle=\operatorname{Tr}\{\hat{\rho} \ldots\})$ often vanish
- Need two-operator averages
(compare with harmonic oscillator: two-operator product $\langle\hat{n}\rangle=\left\langle\hat{a}^{\dagger} \hat{a}\right\rangle$ yields average occupation number)

Nonequilibrium Green's functions $G \gtrless(1, \overline{1})$

Nonequilibrium Green's functions (NEGF):

- $\hat{\Psi}_{H}^{\dagger}(\mathbf{r}, t), \hat{\Psi}_{H}(\mathbf{r}, t)$ are non-commuting \Rightarrow in nonequilibrium exist two possible independent combinations

Correlation functions $G \gtrless$

$$
\begin{aligned}
& G^{<}(1, \overline{1})= \pm \frac{1}{i \hbar}\left\langle\hat{\Psi}_{H}^{\dagger}(\overline{1}) \hat{\Psi}_{H}(1)\right\rangle \\
& G^{>}(1, \overline{1})=\frac{1}{i \hbar}\left\langle\hat{\Psi}_{H}(1) \hat{\Psi}_{H}^{\dagger}(\overline{1})\right\rangle
\end{aligned}
$$

coordinate representation, $1=\mathbf{r}_{1}, t_{1}, \overline{1}=\mathbf{r}_{\overline{1}}, t_{\overline{1}}$, and $\langle\ldots\rangle=\operatorname{Tr}\{\hat{\rho} \ldots\}$

- Connection with reduced density matrix (time-diagonal element)

$$
\rho\left(\mathbf{r}_{1}, \mathbf{r}_{1} ; T\right)= \pm\left. i \hbar G^{<}(1, \overline{1})\right|_{t_{1}=t_{1}=T}
$$

- Relative and center-of-mass variables $T=\left(t_{1}+t_{\overline{1}}\right) / 2, t=t_{1}-t_{\overline{1}}$, $\mathbf{R}=\left(\mathbf{r}_{1}+\mathbf{r}_{\overline{1}}\right) / 2$, and $\mathbf{r}=\mathbf{r}_{1}-\mathbf{r}_{\overline{1}}$ often useful

Nonequilibrium Green's functions $G(1, \overline{1})$

Recall: Vacuum field theory uses time-ordered products
\Rightarrow Perturbation theory, Wick theorem, Feynman diagrams
Thus define
Time-ordered 1-particle Green's function:

$$
\begin{aligned}
G(1, \overline{1}) & =-i\left\langle T_{\mathscr{C}} \hat{\Psi}_{H}(1) \hat{\Psi}_{H}^{\dagger}(\overline{1})\right\rangle \\
& =\theta\left(t_{1}, t_{\overline{1}}\right) G^{>}(1, \overline{1})-\theta\left(t_{\overline{1}}, t_{1}\right) G^{<}(1, \overline{1})
\end{aligned}
$$

- From now on take $\hbar \equiv 1$
- Formally, the operator $T_{\mathscr{C}}$ ensures time-ordering

Time-ordered 2-particle Green's function:

$$
G_{12}(1,2 ; \overline{1}, \overline{2})=(-i)^{2}\left\langle T_{\mathscr{C}} \hat{\Psi}_{H}(1) \hat{\Psi}_{H}(2) \hat{\Psi}_{H}^{\dagger}(\overline{2}) \hat{\Psi}_{H}^{\dagger}(\overline{1})\right\rangle
$$

Information contained in $G(1, \overline{1})$

One-particle density ${ }^{1}$

$$
\langle\hat{n}\rangle\left(\mathbf{r}_{1}, t_{1}\right)=-i G\left(1,1^{+}\right)= \pm i G^{<}\left(\mathbf{r}_{1} t_{1}, \mathbf{r}_{1} t_{1}\right)
$$

Particle number

$$
\langle\hat{N}\rangle\left(t_{1}\right)=-i \int \mathrm{~d}^{3} r_{1} G\left(1,1^{+}\right)
$$

Charge current density (in absence of any vector potential $A(\mathbf{r}, t)$)

$$
\langle\mathbf{j}\rangle(1)= \pm i\left\{\frac{\nabla_{\mathbf{r}_{1}}-\nabla_{\mathbf{r}_{2}}}{2 i m} G^{<}\left(1, \mathbf{r}_{2} t_{1}\right)\right\}_{\mathbf{r}_{1}=\mathbf{r}_{2}}
$$

Total energy (2-particle quantity)

$$
\begin{aligned}
& \langle\hat{E}\rangle\left(t_{1}\right)= \pm i \int \mathrm{~d}^{3} r_{1}\left\{\frac{1}{2}\left(i \frac{\partial}{\partial t_{1}}+H^{0}(1)-2 \mu\right) G(1, \overline{1})\right\}_{1=\overline{1}} \\
& \text { with one-particle (energy) operator } H^{0}(1)=-\frac{\hbar^{2}}{2 m} \nabla_{\mathbf{r}_{1}}^{2}+V\left(\mathbf{r}_{1}, t\right)
\end{aligned}
$$

[^0]
Information contained in $G(1, \overline{1})$

Wigner function:

$$
f(\mathbf{p}, \mathbf{R}, T)= \pm \frac{i}{2 \pi} \int \mathrm{~d} \omega G(\mathbf{p}, \omega ; \mathbf{R}, T)
$$

- $f(\mathbf{p}, \mathbf{R}, T)$ is central quantity in the Wigner representation of a reduced density operator theory

Spectral function:

$$
A(1, \overline{1})=i\left\{G^{>}(1, \overline{1})-G^{<}(1, \overline{1})\right\}
$$

- Gives DOS by Fourier transform with respect to relative time t (in general space-time dependent and momentum resolved)
- Integration over remaining degrees of freedom in $G(\mathbf{p}, \omega ; \mathbf{R}, T) \rightarrow A(\omega)$ (pure DOS)

Time-dependent observables

Evolution of an observable $\langle\hat{O}\rangle$ in the GCE:
Assume $\tilde{H}\left(t \leq t_{0}\right)=\tilde{H}_{0}$ is time-independent for $t \leq t_{0}$

$$
\begin{aligned}
\langle\hat{O}\rangle(t)= & \operatorname{Tr}\left\{\hat{\rho} \hat{O}_{H}(t)\right\}, \quad \hat{\rho}=\frac{e^{-\beta \tilde{H}_{0}}}{\operatorname{Tr}\left\{e^{-\beta \tilde{H}_{0}}\right\}}, \quad \hat{O}_{H}(t)=\hat{U}\left(t_{0}, t\right) \hat{O} \hat{U}\left(t, t_{0}\right) \\
& \text { time-evolution operator } \hat{U}\left(t, t_{0}\right)=\exp \left(-i \int_{t_{0}}^{t} \mathrm{~d} \bar{t} \tilde{H}(\bar{t})\right)
\end{aligned}
$$

Consider: $\hat{U}\left(t_{0}-i \beta, t_{0}\right)$

$$
\hat{U}\left(t_{0}-i \beta, t_{0}\right)=\exp \left(-i\left[\tilde{H}_{0} \bar{t}\right]_{t_{0}}^{t_{0}-i \beta}\right)=\exp \left(-\beta \tilde{H}_{0}\right)
$$

Result:

$$
\langle\hat{O}\rangle(t)=\frac{\operatorname{Tr}\left\{\hat{U}\left(t_{0}-i \beta, t_{0}\right) \hat{U}\left(t_{0}, t\right) \hat{O} \hat{U}\left(t, t_{0}\right)\right\}}{\operatorname{Tr}\left\{\hat{U}\left(t_{0}-i \beta, t_{0}\right)\right\}}
$$

- Interpretation: time-evolution $t_{0} \rightarrow t$, action of $\hat{O}, t \rightarrow t_{0}, t_{0} \rightarrow t_{0}-i \beta$

Complex-time Schwinger/Keldysh contour \mathscr{C}^{\prime}

- Introduce deformed time-contour: Schwinger/Keldysh contour \mathscr{C}^{\prime}

Figure: Full Keldysh contour $\mathscr{C}^{\prime}=\left\{t \in \mathbb{C} \mid \mathfrak{I m} t \in[-\beta, 0], \mathfrak{R e} t \in\left[t_{0}, \infty\right]\right\}$

- Need: Statistical average of the time-ordered field-operator product
- Consequently, \mathscr{V} also enters in the 1-particle Green's function $G(1, \overline{1})=-i\left\langle T_{\mathscr{C}}, \hat{\Psi}_{h}(1) \hat{\Psi}_{H}^{\dagger}(\overline{1})\right\rangle$ giving rise to subordinated Green's functions which exist on different contour branches \mathscr{C} and \mathscr{V}, or on \mathscr{V} only.
\Longrightarrow two mixed functions $\left(G^{\lceil }, G^{\top}\right)$ and the Matsubara Green's function G^{M}

Equations of motions for $G(1, \overline{1})$

© Starting point: Heisenberg equation for $\hat{\Psi}_{H}(\mathbf{r}, t)$ and $\hat{\Psi}_{H}^{\dagger}(\mathbf{r}, t)$

$$
\frac{\partial}{\partial t} \hat{\Psi}_{H}^{(\dagger)}(\mathbf{r}, t)=-i\left[\tilde{H}, \hat{\Psi}_{H}^{(\dagger)}(\mathbf{r}, t)\right]_{-}
$$

It follows ($1=\mathbf{r}_{1}, t_{1} ; \overline{1}=\mathbf{r}_{\overline{1}}, t_{\overline{1}}$)

$$
\left(i \frac{\partial}{\partial t_{1}}+\frac{\hbar^{2}}{2 m} \nabla_{r_{1}}^{2}-V(1)+\mu \hat{N}\right) \hat{\Psi}_{H}(1)=\int_{\mathscr{C}^{\prime}} d \overline{1} W(1-\overline{1}) \hat{\Psi}_{H}^{\dagger}(\overline{1}) \hat{\Psi}_{H}(\overline{1}) \hat{\Psi}_{H}(1)
$$

- Definition: Use short notation $\int_{\mathscr{C}^{\prime}} \mathrm{d} \overline{\mathrm{I}}=\int_{\mathscr{C}^{\prime}}, \mathrm{d} t_{\overline{1}} \int \mathrm{~d}^{3} r_{\overline{1}}$
- Instantaneous pair interaction $W(1-\overline{1})=w\left(\mathbf{r}_{1}-\mathbf{r}_{\overline{1}}\right) \delta_{\mathscr{C}^{\prime}}\left(t_{1}-t_{\overline{1}}\right)$
- Closed equation for $\hat{\Psi}_{H}(1)$, adjoint equation for $\hat{\Psi}_{H}^{\dagger}(1)$
- Goal: nonzero combination of field operators (\rightarrow NEGF)

Equations of motions for $G(1, \overline{1})$

(2) Proceed: Multiplication by $(-i) \Psi_{H}^{(\dagger)}\left(\mathbf{r}_{\overline{1}}, t_{\overline{1}}\right)$, time-ordering $T_{\mathscr{C}^{\prime}}$, and ensemble averaging $\langle\ldots\rangle$

- I.h.s. using $H^{1}(1)=-\frac{\hbar^{2}}{2 m} \nabla_{r_{1}}^{2}+V(1)-\mu \hat{N}$

$$
\begin{aligned}
& (-i)\left\langle T_{\mathscr{C}^{\prime}}\left[\left(i \frac{\partial}{\partial t_{1}}-H^{1}(1)\right) \hat{\Psi}_{H}(1) \hat{\Psi}_{H}^{\dagger}(\overline{1})\right]\right\rangle \\
= & i(-i)\left\langle T_{\mathscr{C}^{\prime}}\left[\frac{\partial}{\partial t_{1}} \hat{\Psi}_{H}(1) \hat{\Psi}_{H}^{\dagger}(\overline{1})\right]\right\rangle-H^{1}(1)(-i)\left\langle T_{\mathscr{C}^{\prime}} \hat{\Psi}_{H}(1) \hat{\Psi}_{H}^{\dagger}(\overline{1})\right\rangle \\
= & \left(i \frac{\partial}{\partial t_{1}}-H^{1}(1)\right) G(1, \overline{1})-\delta_{\mathscr{C}}(1-\overline{1})
\end{aligned}
$$

- r.h.s.
2^{+}indicates $t_{2} \rightarrow t_{2}+\epsilon, \epsilon>0$

$$
\begin{aligned}
& (-i) \int_{\mathscr{C}^{\prime}} \mathrm{d} 2 W(1-2)\left\langle T_{\mathscr{C}^{\prime}} \hat{\Psi}_{H}^{\dagger}\left(2^{+}\right) \hat{\Psi}_{H}(2) \hat{\Psi}_{H}(1) \hat{\Psi}_{H}^{\dagger}(\overline{1})\right\rangle \\
= & \pm i(-i)^{2} \int_{\mathscr{C}^{\prime}} \mathrm{d} 2 W(1-2)\left\langle T_{\mathscr{C}^{\prime}} \hat{\Psi}_{H}(1) \hat{\Psi}_{H}(2) \hat{\Psi}_{H}^{\dagger}\left(2^{+}\right) \hat{\Psi}_{H}^{\dagger}(\overline{1})\right\rangle \\
= & \pm i \int_{\mathscr{C}^{\prime}} \mathrm{d} 2 W(1-2) G_{12}\left(1,2 ; \overline{1}, 2^{+}\right)
\end{aligned}
$$

Kadanoff-Baym/Keldysh equations

O Additionally: Adjoint equation with times t_{1} and $t_{\overline{1}}$ interchanged

Kadanoff-Baym/Keldysh equations (KBE)—Summary

$$
\begin{aligned}
\left(i \frac{\partial}{\partial t_{1}}-H^{1}(1)\right) G(1, \overline{1}) & =\delta_{\mathscr{C}^{\prime}}(1-\overline{1}) \pm i \int_{\mathscr{C}^{\prime}} \mathrm{d} 2 W(1-2) G_{12}\left(1,2 ; \overline{1}, 2^{+}\right) \\
\left(-i \frac{\partial}{\partial t_{\overline{1}}}-H^{1}(\overline{1})\right) G(1, \overline{1}) & =\delta_{\mathscr{C}^{\prime}}(1-\overline{1}) \pm i \int_{\mathscr{C}^{\prime}} \mathrm{d} 2 W(\overline{1}-2) G_{12}\left(1,2 ; \overline{1}, 2^{+}\right)
\end{aligned}
$$

- Coupled pair of first order integro-differential equations in the time arguments $t_{1}, t_{\overline{1}} \in \mathscr{C}^{\prime}$
- $H^{1}(1)=-\frac{\hbar^{2}}{2 m} \nabla_{r_{1}}^{2}+V(1)-\mu \hat{N}$ denotes the single-particle Hamiltonian
- KBE not closed but coupled to higher orders via the 2-particle Green's function $G_{12}(1,2 ; \overline{1}, \overline{2}) \Longrightarrow$ Martin-Schwinger hierarchy (generalization of BBGKY hierarchy): The n-particle Green's function generally requires information from the ($n \pm 1$)-particle Green's function
- KBE must be supplied with initial boundary (or initial) conditions

KBE--boundary or initial conditions

Apply either

- Kubo-Martin-Schwinger (KMS) boundary conditions ${ }^{2}$:
(known from equilibrium theory)

$$
\begin{aligned}
G\left(\mathbf{r}_{1} t_{0}, \overline{1}\right) & = \pm G\left(\mathbf{r}_{1} t_{0}-i \beta, \overline{1}\right) \\
G\left(1, \mathbf{r}_{\overline{1}} t_{0}\right) & = \pm G\left(1, \mathbf{r}_{\overline{1}} t_{0}-i \beta\right)
\end{aligned}
$$

- (Anti-)periodicity in the inverse temperature β for bosons (fermions)
- compute equilibrium Green's function prior to time-propagation-systematic and consistent approach
or
- Initial conditions (Kadanoff/Baym):
from given spectral and Wigner function, A and f construct:

$$
\begin{aligned}
i G^{>}\left(\mathbf{p}, \omega ; \mathbf{R}, t_{0}\right) & =A\left(\mathbf{p}, \omega ; \mathbf{R}, t_{0}\right)\left[1 \pm f\left(\mathbf{p}, \omega ; \mathbf{R}, t_{0}\right)\right] \\
\pm i G^{<}\left(\mathbf{p}, \omega ; \mathbf{R}, t_{0}\right) & =A\left(\mathbf{p}, \omega ; \mathbf{R}, t_{0}\right) f\left(\mathbf{p}, \omega ; \mathbf{R}, t_{0}\right)
\end{aligned}
$$

[^1]
Conclusion

- 1-particle Green's function: function of two space-time variables. Equation of motion: KBE
- From $G(1, \overline{1})$ one can calculate time-dependent expectation values such as currents densities, total energy etc.

Why nonequilibrium Green's functions?

- Without external field: NEGF naturally reduces to equilibrium (Matsubara) Green's functions
- Applicable to arbitrary nonequilibrium processes
- Can handle strong external fields nonperturbatively
\rightarrow next lecture:
- Conserving approximations (hierarchy decoupling), memory effects/kernels
- Inclusion of particle-particle interactions via infinite summations (self-energy)

Thanks for your attention!

Next lecture: (i) Hierarchy decoupling, self-energies and Feynman diagrams
(ii) Single-time kinetic equations

Creation and annihilation operators sama

Action of $\hat{\Psi}^{(\dagger)}(\mathbf{r})$ on a N-particle state $\psi^{N}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right)$:

- Particle destruction/annihilation

$$
\hat{\Psi}(\mathbf{r}) \psi^{(N)}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right)=\sqrt{N} \psi^{(N)}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N-1}, \mathbf{r}\right)
$$

- Particle creation

$$
\begin{aligned}
& \hat{\Psi}^{\dagger}(\mathbf{r}) \psi^{(N)}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right) \\
= & \frac{(\pm 1)^{N}}{\sqrt{N+1}} \sum_{j=1}^{N+1}(\pm 1)^{j+1} \delta\left(\mathbf{r}-\mathbf{r}_{j}\right) \psi^{(N)}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{j-1}, \mathbf{r}_{j+1}, \ldots, \mathbf{r}_{N+1}\right)
\end{aligned}
$$

Second quantized Hamiltonian saack

Example: Kinetic energy operator $\hat{T}=-\frac{\hbar^{2}}{2 m} \sum_{i=1}^{N} \nabla_{\mathbf{r}_{i}}^{2}$ in $2^{\text {nd }}$ quantization

$$
\hat{T}=-\frac{\hbar^{2}}{2 m} \int \mathrm{~d}^{3} r \hat{\Psi}^{\dagger}(\mathbf{r}) \nabla_{\mathbf{r}}^{2} \hat{\Psi}(\mathbf{r})
$$

Proof:

$$
\begin{aligned}
\hat{T} \psi^{(N)}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right) & =-\left.\frac{\hbar^{2}}{2 m} \int \mathrm{~d}^{3} r \nabla_{\overline{\mathbf{r}}}^{2} \hat{\Psi}^{\dagger}(\mathbf{r}) \hat{\Psi}(\overline{\mathbf{r}}) \psi^{(N)}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right)\right|_{\overline{\mathbf{r}}=\mathbf{r}} \\
& =-\left.\frac{\hbar^{2}}{2 m} \int \mathrm{~d}^{3} r \nabla_{\overline{\mathbf{r}}}^{2} \hat{\Psi}^{\dagger}(\mathbf{r}) \sqrt{N} \psi^{(N)}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N-1}, \overline{\mathbf{r}}\right)\right|_{\overline{\mathbf{r}}=\mathbf{r}} \\
& =-\left.\frac{\hbar^{2}}{2 m} \sum_{i=1}^{N} \int \mathrm{~d}^{3} r \nabla_{\overline{\mathbf{r}}}^{2} \delta\left(\mathbf{r}-\mathbf{r}_{i}\right) \psi^{(N)}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{i-1}, \overline{\mathbf{r}}, \mathbf{r}_{i+1}, \ldots, \mathbf{r}_{N}\right)\right|_{\overline{\mathbf{r}}=\mathbf{r}} \\
& =-\frac{\hbar^{2}}{2 m} \sum_{i=1}^{N} \nabla_{\mathbf{r}}^{2} \psi^{(N)}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{i-1}, \mathbf{r}, \mathbf{r}_{i+1}, \ldots, \mathbf{r}_{N}\right) \\
& =\left(-\frac{\hbar^{2}}{2 m} \sum_{i=1}^{N} \nabla_{\mathbf{r}_{i}}^{2}\right) \psi^{(N)}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right)
\end{aligned}
$$

$G \gtrless$ in relative and center of mass coordinates fack

We recall that

$$
\begin{array}{r}
G^{<}(\mathbf{p} \omega, \mathbf{R} T)=\int \mathrm{d}^{3} r \mathrm{~d} t e^{-i \mathbf{p r}+i \omega t}\left[\pm i G^{<}(\mathbf{r} t, \mathbf{R} T)\right] \\
G^{>}(\mathbf{p} \omega, \mathbf{R} T)=\int \mathrm{d}^{3} r \mathrm{~d} t e^{-i \mathbf{p r}+i \omega t} i G^{>}(\mathbf{r} t, \mathbf{R} T) \\
\mathbf{R}=\frac{\mathbf{r}_{1}+\mathbf{r}_{\overline{1}}}{2}, \quad \mathbf{T}=\frac{t_{1}+t_{\overline{1}}}{2}, \quad \mathbf{r}=\mathbf{r}_{1}-\mathbf{r}_{\overline{1}}, \quad \mathbf{t}=t_{1}-t_{\overline{1}}
\end{array}
$$

- $G^{<}(\mathbf{p} \omega, \mathbf{R} T)$ can be interpreted as the density of particles with momentum \mathbf{p} and energy ω at the space time point (\mathbf{R}, t)
- Correspondingly, $G^{>}(\mathbf{p} \omega, \mathbf{R} T)$ denotes the density of states available to a particle that is added to the system at (\mathbf{R}, t) with momentum \mathbf{p} and energy ω

Spectral function $A(\omega)$

(1) If the Hamiltonian is of single-particle type $\hat{H}=\sum_{i} \hat{H}^{1}\left(\mathbf{r}_{i}\right)$ (the eigenvalue problem can be solved) and the spectral function is given for (homogeneous systems) by

$$
A(\mathbf{p}, \omega)=2 \pi \delta(\omega-E(\mathbf{p})), \quad E(\mathbf{p})=\frac{p^{2}}{2 m}
$$

(2) For (homogeneous) effective single-particle problems (e.g. in a Hartree-Fock theory) one can replace $E(\mathbf{p}) \rightarrow \frac{p^{2}}{2 m}+\Delta(\mathbf{p})$, where $\Delta(\mathbf{p})$ are the corresponding self-energy contributions.

Time-dependent observables ‘back

- More formally, one arrives at the general expression

$$
\langle\hat{O}\rangle(t)=\frac{\operatorname{Tr}\left\{T_{\mathscr{C}^{\prime}}\left[\exp \left(-i \int_{\mathscr{C}^{\prime}} d \bar{t} \hat{H}(\bar{t})\right) O(t)\right]\right\}}{\operatorname{Tr}\left\{\hat{U}\left(t_{0}-i \beta, t_{0}\right)\right\}}
$$

where the exponential function is to be understood as Dyson series.
$T_{\mathscr{C}}{ }^{\prime}$ is defined by

$$
T_{\mathscr{C}^{\prime}}\left(\hat{O}_{1}\left(t_{1}\right) \ldots \hat{O}_{s}\left(t_{s}\right)\right)=\sum_{\sigma \in \mathcal{P}_{s}}(\pm)^{\prime(\sigma)} \prod_{j=1}^{s-1} \theta\left(t_{\sigma_{j}}, t_{\sigma_{j+1}}\right) \prod_{k=1}^{s} \hat{O}_{\sigma_{k}}\left(t_{\sigma_{k}}\right)
$$

(1) $T_{\mathscr{C}}$, moves later operator to the left
(2) Each exchange of two fermionic operators accompanied by a minus sign, i.e. $I(\sigma)$ gives the number of pair transpositions in permutation σ
(3) $\theta\left(t_{1}, t_{2}\right)=1$ if t_{1} is situated later on the contour \mathscr{C}^{\prime} than t_{2} and 0 otherwise

Full set of Green's functions s back

In general: $G(1, \overline{1})$ can be understood as a 3×3-matrix of the form

$$
\left(\begin{array}{cc|c}
G^{++} & G^{+-} & G^{+\mid} \\
G^{-+} & G^{--} & G^{-\mid} \\
\hline G^{\mid+} & G^{\mid-} & G^{\|}
\end{array}\right)=\left(\begin{array}{cc|c}
G^{c} & G^{<} & G^{1} \\
G^{>} & G^{a} & G^{\top} \\
\hline G^{\ulcorner } & G^{\ulcorner } & G^{M}
\end{array}\right)
$$

(I)

- Correlation functions $G^{\gtrless}(1, \overline{1})$

$$
\begin{aligned}
G^{>}(1, \overline{1}) & =\frac{1}{i}\left\langle\hat{\Psi}_{H}(1) \hat{\Psi}_{H}^{\dagger}(\overline{1})\right\rangle \\
G^{<}(1, \overline{1}) & = \pm \frac{1}{i}\left\langle\hat{\Psi}_{H}^{\dagger}(\overline{1}) \hat{\Psi}_{H}(1)\right\rangle \\
G^{c / a}(1, \overline{1}) & =\theta\left(\pm\left[t_{1}-t_{\overline{1}}\right]\right) G^{>}(1, \overline{1})+\theta\left(\pm\left[t_{\overline{1}}-t_{1}\right]\right) G^{<}(1, \overline{1})
\end{aligned}
$$

c: causal
a: anticausal

- Matsubara Green's function $G^{M}(1, \overline{1})$ with $\tau_{1}, \tau_{\overline{1}} \in \mathfrak{I m} \mathscr{C}^{\prime}$

$$
G^{M}\left(\mathbf{r}_{1}, \mathbf{r}_{\overline{1}} ; \tau_{1}-\tau_{\overline{1}}\right)=G\left(\mathbf{r}_{1} t_{0}-i \tau_{1}, \mathbf{r}_{\overline{1}} t_{0}-i \tau_{\overline{1}}\right)
$$

- Mixed functions $G^{\Gamma / 1}(1, \overline{1})$ with $t_{1}, t_{\overline{1}} \in \mathfrak{R e} \mathscr{C}^{\prime}$ and $\tau_{1}, \tau_{\overline{1}} \in \mathfrak{J m} \mathscr{C}^{\prime}$

$$
\begin{aligned}
& G^{\rceil}\left(\mathbf{r}_{1} t_{1}, \mathbf{r}_{\overline{1}} \tau_{\overline{1}}\right)=G^{<}\left(\mathbf{r}_{1} t_{1}, \mathbf{r}_{\overline{1}} t_{0}-i \tau_{\overline{1}}\right) \\
& G^{\lceil }\left(\mathbf{r}_{1} \tau_{1}, \mathbf{r}_{\overline{1}} t_{\overline{1}}\right)=G^{>}\left(\mathbf{r}_{1} t_{0}-i \tau_{1}, \mathbf{r}_{\overline{1}} t_{\overline{1}}\right)
\end{aligned}
$$

[^0]: ${ }^{1}$ notation 1^{+}indicates $t_{1} \rightarrow t_{1}+\epsilon, \epsilon>0$

[^1]: ${ }^{2}$ obtained from the cyclic property of the trace

