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Kadanoff-Baym/Keldysh equations more

Kadanoff-Baym/Keldysh equations (KBE)—Review

„
i

∂

∂t1
− H1(1)

«
G(1, 1̄) = δC ′(1− 1̄) ± i

Z
C ′

d2 W (1− 2)G12(1, 2; 1̄, 2+)„
−i

∂

∂t1̄
− H1(1̄)

«
G(1, 1̄) = δC ′(1− 1̄) ± i

Z
C ′

d2 W (1̄− 2)G12(1, 2; 1̄, 2+)

H1(1) = − ~2

2m
∇2

r1 + V (1)− µN̂ denotes the single-particle Hamiltonian

The upper sign refers to bosons the lower one refers to fermions, and the
temporal integrations are taken over the Schwinger/Keldysh time contour C ′

KBE not closed but coupled to higher orders via the 2-particle Green’s
function G12(1, 2; 1̄, 2̄)

Martin-Schwinger (MS) hierarchy: The n-particle Green’s function generally
requires information from the (n ± 1)-particle Green’s function
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MS Hierarchy decoupling

Idea: Express 2-particle Green’s function G12 in terms of products of
1-particle Green’s functions

G12(1, 2; 1̄, 2̄) = [G(·, ·)G(·, ·)](1, 2; 1̄, 2̄) + ∆corr(1, 2; 1̄, 2̄)

with corrections ∆corr(1, 2; 1̄, 2̄) (⇒ correlation contributions)

Simplest example: Hartree-Fock approximation (first order)

Fock (exchange)

G12(1, 2; 1̄, 2̄) ≈ G(1, 1̄)G(2, 2̄) ± G(1, 2̄)G(2, 1̄)

Hartree (classical mean-field)
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Formal MS hierarchy decoupling

Introduce self-energy Σ:

±i

Z
C ′

d2 W (1− 2)G12(1, 2; 1̄, 2+)
!
=

Z
C ′

d2 Σ[G , W ](1, 2)G(2, 1̄)

Remarks:

All interaction effects are now contained in the self-energy Σ[G , W ](1, 1̄)

The self-energy appears as a functional of the interaction potential W (1, 1̄)
and the 1-particle Green’s function G(1, 1̄), and thus varies on the
Schwinger/Keldysh contour C ′ −→ Σ≷,Σe/d, and ΣM .

In general, the pair interaction enters Σ as infinite summations

A diagrammatic expansion of Σ (known from ground state theory) can be
extended to finite temperature and nonequilibrium situations
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Conserving approximations

Definition: Approximations for G12 which conserve total energy, momentum and
angular momentum [when calculated from G(1, 1̄)] are denoted as conserving
approximations.
How can one guarantee that a self-energy gives a conserving approximation for the
Green’s function?

Conservation of total energy and momentum if

(A) G(1, 1̄) satisfies the general equations of motions (KBE),

(B) the approximation for G12 satisfies the symmetry condition

G12(1, 2; 1+, 2+) = G12(2, 1; 2+, 1+) .

[G. Baym, and L.P. Kadanoff, Phys. Rev 124, 287 (1961)]

Conclusion: Φ-derivable self-energy more

Σ(1, 1̄) =
δΦ[G ]

δG(1̄, 1)
.

How Φ can be constructed? [J.M. Luttinger, and J.C. Ward Phys. Rev. 118, 1417 (1960)]
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Lowest-order Σ-diagrams

Figure: Self-energy (Feynman) diagrams. First order in the interaction W (1, 1̄):
a) Hartree, b) Fock. Second order in W (1, 1̄): c) & d) second Born terms.

Waved lines (1 :::: 1̄) indicate the interaction W (1− 1̄), whereas solid
lines (1 á 1̄) denote the full nonequilibrium Green’s function G(1, 1̄)

All self-energy terms contain an infinite summation of diagrams.

second order diagrams

first order diagrams
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Interpretation of Σ-diagrams

Contributions of first order in the interaction W :

Figure: First order self-energies: Hartree (class. mean-field) term [left], Fock
(exchange) term [right].

Hartree-Fock self-energy ΣHF = ΣH + ΣF

ΣH(1, 1̄) = ± i δC (1− 1̄)

Z
C

d2 W (1− 2)G(2, 2+)

ΣF(1, 1̄) = i G(1, 1̄)W (1+ − 1̄)

Note the time-ordering and recall 1+ = t1 → t1 + ε>0

Contributions of order n take a sign of (−i)n, the direct (Hartree) term has
an additional minus sign only for fermions

11̄

2
1 1̄
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Interpretation of Σ-diagrams

Contributions of second order in the interaction W :

Figure: Second (order) Born diagrams, composed of two interaction lines and
three Green’s functions. Direct term [left], exchange term [right].

Second Born contributions Σ2ndB = Σ2ndB
1 + Σ2ndB

2

Σ2ndB
2 (1, 1̄) = ± (−i)2

Z
C

d2 d3 G(1, 1̄)W (1+ − 2)W (1̄− 3)G(3, 2)G(2, 3+)

Σ2ndB
1 (1, 1̄) = (−i)2

Z
C

d2 d3 G(1, 2)W (1− 3+)G(2, 3)G(3, 1̄)W (2+ − 1̄)

Σ2ndB
1 and Σ2ndB

2 are to be added to the Hartree-Fock self-energy ΣHF

32
1̄1

32

1̄1
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Equation of motion for G ∗(1, 1̄), ∗ ∈ {M , >, <, e, d}

Keldysh/Kadanoff-Baym equations:„
i

∂

∂t1
− H1(1)

«
G(1, 1̄) = δC ′(1− 1̄) +

Z
C ′

d2 Σ(1, 2)G(2, 1̄)

together with its adjoint equation including the derivative ∂1̄

G(1, 1̄) is a 3× 3-matrix of the form0B@ G++ G+− G+|

G−+ G−− G−|

G |+ G |− G ||

1CA =

0B@ G c G< G e

G> G a G e

G d G d GM

1CA
Need equations for the elements of the Keldysh matrix

G≷(1, 1̄) , GM(1, 1̄) , G d/e(1, 1̄)

Question: How to evaluate the integrals
R

C ′d2 Σ(1, 2)G(2, 1̄) for the matrix
elements of a product or convolution? ⇒ ”Langreth rules”
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Langreth rules

Results for Convolution and product of two (Keldysh) functions defined on C ′

1Space variables are dropped for simplicity

quantity1 convolution product

c(z , z ′) =
R

C ′ dt̄ a(t, t̄) b(t̄, t′) c(z , z ′) = a(t, t′) b(t′, t)

c>(t, t′) a>◦bA + aR◦b> + ae?bd a> b<

c<(t, t′) a<◦bA + aR◦b< + ae?bd a< b>

ce(τ, t) aR◦be + ae?bM ae bd

cd(t, τ) ad◦bA + aM?bd ad be

cM(τ, τ ′) aM?bM aM bM

cR(t, t′) aR◦bR aR b≷ + a≷ bA

cA(t, t′) aA◦bA aA b≷ + a≷ bRˆ
a ◦b

˜
(t, t′)=

R ∞
t0

d t̄ a(t, t̄) b(t̄, t′)ˆ
a ?b

˜
(t, t′)=−i

R t0−iβ
t0

dτ̄ a(t, τ̄) b(τ̄ , t′) aR/A(t, t′)=a≷(t, t′)− a≶(t, t′)
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Equation of motion for the correlation functions G≷

Summary: Write ∂t instead of ∂
∂t“

i ∂t1 − H1(1)
”

G≷(1, 1̄) =

Z t1

t0

d2 ΣR(1, 2)G≷(2, 1̄) +

Z t1̄

t0

d2 Σ≷(1, 2)GA(2, 1̄)

−i

Z β

0

d2 Σe(1, 2)G d(2, 1) (1)

“
−i ∂t1̄

− H1(1̄)
”

G≷(1, 1̄) =

Z t1

t0

d2 GR(1, 2)Σ≷(2, 1̄) +

Z t1̄

t0

d2 G≷(1, 2)ΣA(2, 1̄)

−i

Z β

0

d2 G e(1, 2)Σd(2, 1) (2)

with definitions of retarded (R) and advanced (A) quantities

GR/A(1, 1̄) = G≷(1, 1̄)− G≶(1, 1̄) , ΣR/A(1, 1̄) = Σ≷(1, 1̄)− Σ≶(1, 1̄)

Memory kernels: Memory and dissipation, decay of the Green’s function. Initial
correlations enter via the Matsubara Green’s function GM ⇒ G≷(r1t0, r1̄t0) and
G e(r1t0, r1̄t0 − iτ), G d(r1t0 − iτ, r1̄t0).

initial correlations

memory kernel memory kernel1-p. energy



Self-energy concept Approximations and Feynman diagrams Single-time kinetic equations Conclusion

Derivation of single-time kinetic equations

Single-time kinetic equations can be obtained in the limit of slowly varying
disturbances.
Motivation:

Avoid to deal with two-time quantities, or obtain only statistical information
(fully included in the Wigner function—the time-diagonal part of G<)

Relevant for studying simple transport processes

Basic assumptions:

Consider the case where the single-particle energy H1(r1, t1) is slowly varying
in time and space

Consequence of a scale separation: G≷(1, 1̄) are slowly varying functions of
the coordinates

R =
r1 + r1̄

2
, T =

t1 + t1̄
2

,

but are sharply peaked about zero values of

r = r1 − r1̄ , t = t1 − t1̄ .

⇒ Consider G≷(rt,RT ) and its Fourier transform in r and t remind yourself
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Derivation of the Boltzmann equation I

Recipe: [see L.P. Kadanoff, and G. Baym, Quantum Statistical Mechanics (Benjamin, Inc., New York, 1962)]

1 Substract adjoint KBE (with time arguments t1 and t1̄ interchanged) from
the KBE for G<(1, 1̄), and express the space time variables of G and Σ in
terms of relative and center of mass coordinates.

2 Neglect the third collision integral on the r.h.s. accounting for initial
correlations—instead integrate over

R t1
−∞dt̄ . . . and

R t1̄
−∞dt̄ . . .

3 Expand the difference of

H1
“
r1 = R− r

2
, t1 = T − t

2

”
− H1

“
r1̄ = R +

r

2
, t1̄ = T − t

2

”
in powers of r and t, and retain only lowest-order terms (r and t small)

4 Similarly, proceed with the relative variables on the r.h.s. (collision integrals)
of the KBE—fully neglect the small quantities added to R and T .

Typical integrals:Z
C ′

d3 r̄ dt̄ G (̄r t̄;RT )Σ(r − r̄ t − t̄;RT ) convolution in Fourier space
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Derivation of the Boltzmann equation II

5 Fourier transformation with respect to variables r and t lead to approximate
equations for G≷(pω,RT )

Intermediate result: H1 = −∇2

2m
+ V (1) ~ = 1»

∂T +
p∇R

m
−∇R V (R, T )∇p + ∂TV (R, T ) ∂ω

–
G<(pω,RT )

= −G<(pω,RT )Σ>(pω,RT )

+ G>(pω,RT )Σ<(pω,RT )

6 Insert second Born expressions for the self-energy Σ≷ (take all second spatial
arguments in G to be R—the disturbance varies very little within a distance
of the order of the potential range)

7 Fourier transform in r, t: Σ≷(rt,RT ) → Σ≷(pω,RT )



Self-energy concept Approximations and Feynman diagrams Single-time kinetic equations Conclusion

Derivation of the Boltzmann equation III

Self-energy (second order):

Σ≷(pω,RT ) ≈ 1

2

Z
d3p′dω′ dp̄ dω̄ d3p̄′ dω′

× δ(p + p′ − p̄− p̄′) δ(ω + ω′ − ω̄ − ω̄′)

× [w(p− p̄)± w(p− p̄′)]2

× G≶(p′ω′,RT )G≷(p̄ω̄,RT )G≷(p̄′ω̄′,RT )

8 Reconstruction problem: Assume that the Green’s functions can be expressed
via the Wigner distribution function f (p,R, T ) and the spectral function
A(pω,RT ) = 2πδ[ω − E(p,R, T )]

G<(pω,RT ) = A(pω,RT ) f (p,R, T )

G>(pω,RT ) = A(pω,RT ) [1± f (p,R, T )]

9 Some differential algebra ...
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The Boltzmann (Landau) equation

Result: Boltzmann equation with Born approximation collision cross section:»
∂T +

p∇R

m
−∇R V (R, T )∇p

–
f (p,R, T ) = I (p,R, T )

= −1

2

Z
d3p′ dp̄ d3p̄′ δ(p + p′ − p̄− p̄′) δ

`
E(p) + E(p′)− E(p̄)− E(p̄′)

´
× [w(p− p̄)∓ w(p− p̄′)]2

×
ˆ
f f ′ (1± f̄ ) (1± f̄ ′) − (1± f ) (1± f ′) f̄ f̄ ′

˜

f (p,R, T ) is the Wigner distribution

function, E(p) = p2

2m
denotes the

quasiparticle energy. f = f (p,R, t),
f ′ = f (p′,R, t), etc.

Kinetic energy and momentum are
preserved due to the δ-functions

Limited to times larger than the correlation
time, T � τcorr

Figure: Feynman diagram

|p̄′〉|p′〉

|p̄′〉|p〉

collision integral
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Conclusion I

Boltzmann equation

Single-time equation for the Wigner function f (p,R, T )

Stationary solutions: Maxwell, Fermi or Bose distributions

I (p,R, T ) → 0 leads to thermodynamic properties of the ideal gas, where
correlations are neglected

Reason: local approximation (neglect of memory)

⇒ Memory is fully contained in the two-time Keldysh/Kadanoff-Baym
equations for G(1, 1̄)
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Conclusion II

MS hierachy formally decoupled by introducing the self-energy Σ[G , W ]
⇒ Describe binary interactions as an infinite summation of diagrams

Conserving approximations allow for a systematic truncation of the hierarchy.
Examples: Hartree-Fock, second Born, GW GW

Figure: Self-energy diagrams. First order in the interaction W (1, 1̄): a)
Hartree, b) Fock. Second order in W (1, 1̄): c) & d) second Born terms.

Structure/identification and meaning of the appearing terms in the equation:

memory kernels & inclusion of initial correlations
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Fin

Thanks for your attention!

Next lecture: (i) Numerical technique solving the KBE
(ii) Applications to semiconductors (homogeneous systems) as well as quantum

dots, atoms and molecules (inhomogeneous systems)



Appendix

Structure of the nonequilibrium Green’s function back

Indeed, the nonequilibrium Green’s function (NEGF) has the structure of a usual
(mathematical) Green’s function in the following sense:

(a) When neclecting all collision integrals on the r.h.s. of the KBE → effective
single-particle or ideal quantum system described by G0(1, 1̄) which obeys»

i
∂

∂t1
− H1(1)

–
G0(1, 1̄) = δC ′(1− 1̄) (3)

Eq. (3) then gives rise to an inverse Green’s function

G−1
0 (1, 1̄) =

»
i

∂

∂t1
− H1(1)

–
δC ′(1− 1̄)

with matrix equation G−1
0 G0 = 1 .

(b) generaliztaion to case with correlations: define

G−1(1, 1̄) = G−1
0 (1, 1̄)− Σ(1, 1̄)

such that Z
C ′

d2 G−1(1, 2)G(2, 1̄) = δC ′(1− 1̄)

is equivalent to the Kadanoff-Baym equations.
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Lowest-order Φ-diagrams back

Figure: Generating Φ-diagrams. Prefactor is given by nΣ/2n.

The functional Φ can be constructed by summation over irreducible self-energy
diagrams closed with an additional Green’s function line and multiplied by
appropriate numerical factors:

Φ[G ] =
X
n,k

1

2n

Z
d1d2 Σ

(n)
k (1, 1̄)G(1̄, 1+)

n denotes the number of interaction lines

k labels Σ-diagrams

nΣ is the number of topologically different Σ-diagrams that can be generated
from the Φ-diagram



Appendix

G≷ in relative and center of mass coordinates back

We recall that

G<(pω,RT ) =

Z
d3r dt e−ipr+iωt [±iG<(rt,RT )]

G>(pω,RT ) =

Z
d3r dt e−ipr+iωt i G>(rt,RT )

R =
r1 + r1̄

2
, T =

t1 + t1̄
2

, r = r1 − r1̄ , t = t1 − t1̄

G<(pω,RT ) can be interpreted as the density of particles with momentum p
and energy ω at the space time point (R, t)

Correspondingly, G>(pω,RT ) denotes the density of states available to a
particle that is added to the system at (R, t) with momentum p and energy ω



Appendix

GW approximation back

Figure: GW self-energy (∼ dynamical screened potential)—summation of all
bubble-like diagrams [A. Stan et al, Europhys. Lett. 76, 298 (2006)]
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